
CakePHP Security Assessment
Mozilla
October 17, 2017 – Version 1.0

Prepared for
Gervase Markham, Mozilla
Larry E. Masters and Mark Story, CakePHP

Prepared by
Brandon Bernie
Paul Tetreau
Ryan Koppenhaver

©2017 – NCC Group

Prepared by NCC Group Security Services, Inc. for Mozilla. Portions of this document and the templates
used in its production are the property of NCC Group and cannot be copied (in full or in part) without
NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the
information contained herein. Use of NCCGroup’s services does not guarantee the security of a system,
or that computer intrusions will not occur.



Executive Summary
Synopsis
In the Summer of 2017, Mozilla engaged NCC Group
to perform a security assessment of the CakePHP
framework under the Secure Open Source track of the
Mozilla Open Source Support program, which aims to
help improve the security of Free and Open Source
Software by funding security audits of vital projects.

CakePHP is a web application framework that provides
aModel-View-Controller (MVC) architecture. It is written
in PHP and licensed under the MIT license. Its home
page is https://cakephp.org/, and the current version at
the time of the test was 3.5.0-RC1.

NCC Group identified specific security flaws that could
affect certain applications that use specific CakePHP
features, as well as areas in whichCakePHP’s defaults are
insecure.

The assessment was done by three consultants over
three calendar weeks, from July 31 to August 18, 2017.
The consultants reviewed theCakePHP source code and
performeddynamic testing using the standardCakePHP
tutorial application aswell as other test applications built
by the consultants.

Scope
NCC Group’s evaluation included:

• The CakePHP framework: The web application frame-
work provides “behind the scenes” elements such
as the HTTP Server, Middleware, Router, MVC base
classes; as well as developer APIs including Object-
Relational Mapper (ORM) functionality and HTML
helpers.

• cake: The CakePHP console provides command-line
functionality such as a development server, route
information, and an interactive REPL, as well as a
framework to build custom scripts to interact with a
CakePHP application.

• bake: The bake console application performs code
generation based on a database schema or various
command line arguments.

Additionally, the Bookmarker tutorial application1 was
used as a reference application, in conjunction with test
applications generated using bake.

The assessment targeted the 3.5.0-RC1 release of
CakePHP, version 1.3.7 of bake, and commit faf9e003
of bookmarker-tutorial.

Key Findings
The assessment did not uncover any large-scale, di-
rectly exploitable flaws in CakePHP that would affect
all applications using the framework, but did expose
various issues which could impact applications which
use particular elements of CakePHP functionality.

In addition, NCC Group noted some areas in which
writing a secure application would require developers
to explicitly override defaults provided by the frame-
work; these were reported as findings where they did
not appear to be clearly documented, or where NCC
Group believes them to be sufficiently dangerous as to
warrant a direct call-out.

Some of the most notable issues found were:

• CakePHP provides insecure defaults for attribute
accessibility in mass assignment. This could allow
malicious users to modify data in an application that
they should not be allowed to, such as changing the
price of items in a shopping cart, or changing their
own user account to be an administrator.

• Applications could be exposed to cross-site scripting
vulnerabilities if untrusted URLs are passed to some
of CakePHP’s HTML helper methods, or if untrusted
values are used in attribute keys.

• Applications using CakePHP’s XML utility class could
be exposed to a denial of service via an entity
expansion attack which consumes a large amount of
server memory relative to the request size.

Strategic Recommendations
• Support templates using a language which performs
automatic HTML escaping, and make it the default.
Manually escaping HTML metacharacters in tem-
plates is error-prone, and may not work correctly in
corner cases such as variables interpolated inside
HTML tags or scripts.

• Create consolidated documentation of security best
practices. This will allow developers to quickly
familiarize themselves with areas of concern, and
prevent avoidable security mistakes.

1https://book.cakephp.org/3.0/en/tutorials-and-examples/bookmarks/intro.html

2 | CakePHP Security Assessment

https://cakephp.org/
https://github.com/cakephp/cakephp/tree/3.5.0-RC1
https://github.com/cakephp/bake/tree/1.3.7
https://github.com/cakephp/bookmarker-tutorial/commit/faf9e00369cd8672af8332aa48881c53f162229b
https://book.cakephp.org/3.0/en/tutorials-and-examples/bookmarks/intro.html


Dashboard
Target Metadata
Name CakePHP
Type Web Development Framework
Platforms PHP 7

Engagement Data
Type Web Framework Security

Assessment
Method Source Review
Dates 2017-07-31 to 2017-08-18
Consultants 3
Level of
effort 45 person-days

Finding Breakdown
Critical Risk issues 0
High Risk issues 1
Medium Risk issues 5
Low Risk issues 9
Informational issues 5
Total issues 20

Category Breakdown
Access Controls 4
Configuration 1
Cryptography 9
Data Exposure 1
Data Validation 5

Key
Critical High Medium Low Informational

3 | CakePHP Security Assessment



Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCCGroup’s
risk rating and finding categorization, see Appendix A on page 31.

Title ID Risk
Mass Assignment Allowed by Default 001 High
Unsafe HTML Templates By Default 003 Medium
Multiple Html Helper Methods Do Not Escape URLs 004 Medium
HTML Helpers Do Not Escape Attribute Keys 005 Medium
Incorrect X-Forwarded-For Header Parsing Allows IP Spoofing 015 Medium
XML Entity Expansion Denial of Service 018 Medium
randomBytes Returns Insecure Random Numbers 009 Low
Comment Incorrectly Advertises Mitigation for User Enumeration Timing Attack 010 Low
Digest Authentication Uses Non-Constant-Time Comparisons 012 Low
Tutorial Application Allows Path Traversal in Pages Controller 014 Low
AutoLink Functions Use Predictable and Collision-Prone Hashes 016 Low
Inconsistent Configuration of Transport Encryption Protocols 019 Low
Form Validation Tokens Are Not Associated with Users 020 Low
Form Validation Tokens Are Vulnerable to Potential Hash Collisions 021 Low
Asset Middleware Can Serve Dot Files 022 Low
Setters of Entity Attributes Are Not Always Called 002 Informational
Insecure Default Hashing Algorithm 006 Informational
Certificate Authority Bundle Includes Untrustworthy CAs 007 Informational
Insecure UUID Function 008 Informational
Digest Authentication Uses MD5 Algorithm to Construct Nonces 011 Informational

4 | CakePHP Security Assessment



Finding Details
Finding Mass Assignment Allowed by Default

Risk High Impact: High, Exploitability: Medium

Identifier NCC-CakePHP_2017-001

Category Access Controls

Location • CakePHP: src/Datasource/EntityTrait.php: 118
• Bake: src/Template/Bake/Model/entity.ctp: 25 - 37

Impact By default, any attribute of an entity may be modified by a request, i.e. a user updating their
password would be able to set their privilege level to that of an administrator.

Description Mass assignment is often used by developers as a convenience mechanism for setting at-
tributes of a model, but it can be a problem when a model’s attributes are overexposed,
allowing malicious users to unexpectedly modify sensitive model attributes, such as a user’s
privilege level.

Mass assignment is regulated by the _accessible associative array, which maps entity at-
tributes to booleans that indicate whether or not that attribute may be assigned when the
entity is updated. The * character is a wildcard that matches any attribute.

The _accessible array in the EntityTrait trait defaults to allowing all attributes to be
assigned:

protected $_accessible = ['*' => true];

Similarly, the Bake command defaults to allowing all attributes to be assigned except the
primary key of the model:

$accessible = [];
if (!isset($fields) || $fields !== false) {

if (!empty($fields)) {
foreach ($fields as $field) {

$accessible[$field] = 'true';
}

} elseif (!empty($primaryKey)) {
$accessible['*'] = 'true';
foreach ($primaryKey as $field) {

$accessible[$field] = 'false';
}

}
}

For example, a user model might contain an admin attribute, with a value of True for ad-
ministrators and False for other users, a username attribute, and a password attribute. If
that entity were vulnerable to mass assignment, a password reset page that permits a user to
update their password would also permit the user to modify their admin attribute, allowing
for privilege escalation.

Mass assignment is a very dangerous default, made infamous by Ruby on Rails, whoseGithub
repository was compromised2 by an unauthorized user because of that default. This allowed
the attacker to add their SSH keys to the trusted keys list of the repository.

Recommendation The accessible attributes list should be empty by default, requiring developers to manually
2https://github.com/rails/rails/commit/b83965785db1eec019edf1fc272b1aa393e6dc57

5 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Datasource/EntityTrait.php#L118
https://github.com/cakephp/bake/blob/53e40910aec77743ed1e30d4925a43b37197729d/src/Template/Bake/Model/entity.ctp#L25-L37
https://github.com/rails/rails/commit/b83965785db1eec019edf1fc272b1aa393e6dc57


whitelist accessible attributes.

Consider throwing an exception when protected attribute assignment is attempted using the
ORM, i.e. via patchEntity.

6 | CakePHP Security Assessment



Finding Unsafe HTML Templates By Default
Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-CakePHP_2017-003

Category Data Validation

Location Templates

Impact Variables in templates are not escaped by default, increasing the likelihood of cross-site
scripting vulnerabilities.

Description When dereferencing variables in templates, values are not escaped by default. This cre-
ates an unsafe-by-default design where developers must explicitly call sanitizing functions
to avoid being vulnerable to cross-site scripting when user-derived input is included in tem-
plates.

From the Views documentation3:

You should remember to always escape any user data before outputting it asCakePHP
does not automatically escape output. You can escape user content with the h()
function…

Insecure defaults distribute the onus of secure coding across all users of a framework, increas-
ing the likelihood of insecure applications through ignorance (not understanding insecure
defaults) or accident (forgetting to use secure alternatives).

Recommendation Safely encode variables in templates by default. Require developers to explicitly call func-
tionswith discouraging or risk-highlighting names4 that signify that their input is not escaped.
3https://book.cakephp.org/3.0/en/views.html#view-variables
4For example: dangerousUnsafeHTML($someVar)

7 | CakePHP Security Assessment

https://book.cakephp.org/3.0/en/views.html#view-variables


Finding Multiple Html Helper Methods Do Not Escape URLs
Risk Medium Impact: High, Exploitability: Low

Identifier NCC-CakePHP_2017-004

Category Data Validation

Location Methods in src/View/Helper/HtmlHelper.php:

• image()

• meta('icon', ...)

• css()

• script()

Impact If an application accepts a user-supplied URL, and passes it to the affected methods to gen-
erate HTML, a cross-site scripting vulnerability could result.

Description As noted in finding NCC-CakePHP_2017-003 on the previous page, CakePHP’s default tem-
plating system uses plain PHP templates, which do not perform automatic HTML-encoding of
dynamic content. CakePHP does provide an HtmlHelper class (exposed as $this->Html in
templates) with various methods to construct HTML around arbitrary input. In general, these
methods perform HTML encoding of the content and attribute values passed into them.

However, the methods listed above accept a URL parameter and do not encode it. In these
methods, theURLparameter is treated as a special case andpassed throughassetUrl, rather
than formatAttributes, which is used in most other helper methods. This can allow for
cross-site scripting attacks if a CakePHP application accepts a URL as user input and relies on
the helper method to safely render it.

Reproduction Steps Insert the following code in a CakePHP template:

<?php $evil = 'x:"><script>alert(1)</script>'; ?>
<?= $this->Html->image($evil); ?>

Browse to the relevant page and observe the JavaScript alert.

Recommendation Modify the affectedmethods toHTML-encode theURLs beforewriting them to the generated
HTML.

8 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/3.5.0-RC1/src/View/Helper/HtmlHelper.php
https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/HtmlHelper.php#L834
https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/HtmlHelper.php#L233
https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/HtmlHelper.php#L435
https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/HtmlHelper.php#L528


Finding HTML Helpers Do Not Escape Attribute Keys
Risk Medium Impact: High, Exploitability: Low

Identifier NCC-CakePHP_2017-005

Category Data Validation

Location • src/View/Helper/HtmlHelper.php

• src/View/StringTemplate.php, 276-297

Impact If an application accepts a user-supplied string, and passes it as an attribute key to the af-
fected methods, a cross-site scripting vulnerability could result.

Description As noted in finding NCC-CakePHP_2017-003 on page 7, CakePHP’s default templating sys-
tem uses plain PHP templates, which do not perform automatic HTML-encoding of dynamic
content. CakePHP does provide an HtmlHelper class (exposed as $this->Html in tem-
plates) with various methods to construct HTML around arbitrary input. In general, these
methods perform HTML encoding of the content and attribute values passed into them.
However, attribute keys are not escaped or sanitized.

Reproduction Steps Insert the following code in a CakePHP template:

<?php
$evil_key = "><script>alert(1)</script>";
$options = [ $evil_key => 'some value' ];

?>
<?= $this->Html->div('myclass', 'some content', $options); ?>

Browse to the relevant page and observe the JavaScript alert.

Recommendation In the _formatAttribute method in StringTemplate.php, ensure that $key matches a
regular expression such as \A(\w|[.-])+\z.5

5This is somewhat more restrictive than the HTML Standard (https://html.spec.whatwg.org/#attributes-2), and may
be relaxed if necessary for Unicode support.

9 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/HtmlHelper.php
https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/StringTemplate.php#L276-L297
https://html.spec.whatwg.org/#attributes-2


Finding Incorrect X-Forwarded-For Header Parsing Allows IP Spoofing
Risk Medium Impact: High, Exploitability: Low

Identifier NCC-CakePHP_2017-015

Category Access Controls

Location src/Http/ServerRequest.php: 550 - 561

Impact An attacker may be able to bypass access restrictions based on IP addresses.

Description The CakePHP framework provides applications with functionality to obtain the requestor’s IP
address. Generally, this information comes from the REMOTE_ADDR environment variable, the
exception being when the application is sitting behind a proxy, such as nginx.

In order to pass a client’s IP address to applications through the proxy, users must set the
trustProxy configuration variable to true. When the application is configured in this way,
clientIP()will take the first value from thepotential list of values returned in theX-Forwarded-
For HTTP header.

This behavior can be exploited by attackers due to the way proxies append values to this
header. If an attacker sets the value of the X-Forwarded-For header in the request they
make to the vulnerable application, the proxy will append the client’s real IP address to the
HTTP header.
X-Forwarded-For: spoofed.ip, real.ip

In this case, when clientIP() is called, a regular expression is used to extract the IP address
of the client, albeit incorrectly. The expression /(?:,.*)/ in the call to preg_replace will
match the first comma and all subsequent characters in the X-Forwarded-For header value,
causing them to be stripped. This leaves only the first (spoofed) IP address in the header to
be returnedby the function. If this function is used in a security context it could allow attackers
to bypass access controls.

/**
* Get the IP the client is using, or says they are using.
*
* @return string The client IP.
*/

public function clientIp()
{

if ($this->trustProxy && $this->getEnv('HTTP_X_FORWARDED_FOR')) {

$ipaddr = preg_replace('/(?:,.*)/', '', $this->getEnv('HTTP_X_FORWARDED_
FOR'));
} elseif ($this->trustProxy && $this->getEnv('HTTP_CLIENT_IP')) {

$ipaddr = $this->getEnv('HTTP_CLIENT_IP');
} else {

$ipaddr = $this->getEnv('REMOTE_ADDR');
}

return trim($ipaddr);
}

Recommendation Capture and return the last value in the list of values of the X-Forwarded-For HTTP header.

10 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Http/ServerRequest.php#L550-L561


Finding XML Entity Expansion Denial of Service
Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-CakePHP_2017-018

Category Data Validation

Location src/Utility/Xml.php: 104-131

Impact An attacker can cause a severe denial-of-service by exhausting the system’s memory.

Description CakePHP handles user-controllable XML input and is vulnerable to an XML Entity Expansion
(XEE) attack. This attack occurs when an insecurely configured XML parser processes an XML
document that includes maliciously defined entities.

Because CakePHP does not allow recursive entity expansion, it is not subject to the more
severe variant of XEE, the Billion Laughs attack.6 However, CakePHP is vulnerable to a varia-
tion known as the Quadratic Blowup attack, which works by defining a single large entity and
referring to it many times.

In the case of CakePHP, If an attacker defines an entity, such as “ent”, as being 2ˆ16 characters
long and refers to that entity 2ˆ16 times inside the root “data” element, they end up with an
XML bomb attack of 385 KB in size that expands to∼4.3 GB when parsed.

This example results in CakePHP consuming enormous amounts of system resources, even-
tually causing the framework to fail due to running out of memory.

The following example shows this type of entity expansion:

<?xml version="1.0"?>
<!DOCTYPE data [

<!ENTITY ent "aaaaaaaaaaaaaaaaaa...">
]>
<data>&ent;&ent;&ent;&ent;&ent;&ent;...</data>

Reproduction Steps See Appendix B on page 33.

Recommendation Configure the XML parser to limit the size of the expanded XML document by setting the
parseHuge flag to false, which limits LibXML from parsing a document that will expand to
over 10 MB. If possible, disable <!DOCTYPE> processing entirely.
6https://en.wikipedia.org/wiki/Billion_laughs_attack

11 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Utility/Xml.php#L104-L131
https://en.wikipedia.org/wiki/Billion_laughs_attack


Finding randomBytes Returns Insecure Random Numbers
Risk Low Impact: High, Exploitability: Low

Identifier NCC-CakePHP_2017-009

Category Cryptography

Location src/Utility/Security.php: 100-125

Impact An attacker may be able to leverage weaknesses in the random number generator to obtain
the values of OAuth secrets or CSRF tokens.

Description If theCakePHP framework does not have access to random_bytes() (i.e. PHP< 7) or it cannot
use openssl_random_pseudo_bytes() it will fall back to using Security::insecureRand

omBytes(). Although the CakePHP documentation states that if neither source is available
a warning will be emitted and an unsafe value will be used for backwards compatibility rea-
sons,7 this may not be sufficiently visible for administrators of the application at runtime.

Recommendation If CakePHP cannot generate cryptographically secure random numbers then it must return
an error to the user and halt the process.
7https://book.cakephp.org/3.0/en/core-libraries/security.html

12 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Utility/Security.php#L100-L125
https://book.cakephp.org/3.0/en/core-libraries/security.html


Finding Comment Incorrectly Advertises Mitigation for User Enumeration Timing At-
tack

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-CakePHP_2017-010

Category Cryptography

Location src/Auth/BaseAuthenticate.php: 94-132

Impact Applications using CakePHP’s authentication systemmay be vulnerable to timing-based user
enumeration attacks.

Description The method documentation comment for _findUser in BaseAuthenticate.php states:

Input passwordswill be hashed evenwhen a user does not exist. This helpsmitigate
timing attacks that are attempting to find valid usernames.

However, this is not true; the function exits early if a matching username is not found:

$result = $this->_query($username)->first();

if (empty($result)) {
return false;

}

The relevant functionality seems to have been removed during refactoring performed in
commit aa6088a3 in November, 2013.

If an application’s user list is sensitive enough that a developer wishes to protect against
timing-based user enumeration, they may be misled into assuming their application is safe
and fail to implement their own constant-time login function.

Recommendation At a minimum, correct the comment. While the previous functionality does not guarantee
strict constant-time processing for all submitted usernames, consider re-adding it to make
timing attacks more difficult.

13 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Auth/BaseAuthenticate.php#L94-L132
https://github.com/cakephp/cakephp/commit/aa6088a37fa11fc386f9099d758f01cf63af9e2e#diff-18a63329ef8f66239b1614216a27abf5L121


Finding Digest Authentication Uses Non-Constant-Time Comparisons
Risk Low Impact: Low, Exploitability: Low

Identifier NCC-CakePHP_2017-012

Category Cryptography

Location src/Auth/DigestAuthenticate.php: 124, 280

Impact If an application uses CakePHP’s implementation of HTTP Digest Authentication, an attacker
may be able to forge a login credential and impersonate a user.

Description In most programming language libraries, a string comparison will exit as soon as it finds two
characters that do not match. A timing attack can be mounted using statistical analysis of the
time it takes to compare the values. For some background information on string comparison
timing attacks, see https://emerose.com/timing-attacks-explained.

The DigestAuthenticate class provides HTTP Digest Authentication. In Digest Authenti-
cation, the server provides a nonce value to the client, who returns a cryptographic digest
(hash) of: the nonce, the user’s password, and several other values. The server computes the
same digest, and confirms that the supplied valuematches. In the CakePHP implementation,
the following code performs this procedure:

public function getUser(ServerRequest $request)
{

$digest = $this->_getDigest($request);
/* ... */

if (!$this->validNonce($digest['nonce'])) {
return false;

}
/* ... */

$hash = $this->generateResponseHash($digest, $password, $request->getEnv('OR
IGINAL_REQUEST_METHOD'));
if ($digest['response'] === $hash) {

return $user;
}

return false;
}

Note the use of a === comparison between the user-supplied response hash and the server’s
value. Additionally, the server generates nonces using a hash of a secret and an expiration
time, and similarly validates it with a non-constant time comparison.

This allows an attacker to first attack the validNonce test to create a nonce valid for a time
far in the future, and then, using this nonce, to attack the main hash comparison.

Recommendation Usea string comparison function that does not leak information aboutwhich charactersmatch,
frequently called a “constant time comparison” function.

The general behavior of a constant time comparison is to compare every character with no
branching, rather than exiting as soon as a difference is detected:

14 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Auth/DigestAuthenticate.php#L124
https://emerose.com/timing-attacks-explained


// pseudo-code example
function constantTimeEquals(s1, s2) {

if length(s1) != length(s2) { return false; }
acc = 0;
for( i = 0; i < length(s1); i++) {
acc |= ( s1[i] ^ s2[i] ); //set bit(s) in acc if chars differ

}
return (acc == 0);

}

In PHP, the built-in hash_equals function should be used for this purpose.

15 | CakePHP Security Assessment



Finding Tutorial Application Allows Path Traversal in Pages Controller
Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-CakePHP_2017-014

Category Access Controls

Location src/Controller/PagesController.php in the Bookmarker tutorial application.

Impact If a developer re-uses the tutorial’s “Pages” controller for a real application, an attacker could
view arbitrary view templates in the application and test for the existence of template files
elsewhere on the server.

Description When accessing the filesystem, it is extremely important that an application performs security
checks to ensure valid access. If a user-controlled filename is provided to the system, it opens
a risk of file access that is not limited to the intended files.

The CakePHP “Bookmarker” tutorial application8 includes a “Pages” controller similar to the
one in theofficial skeleton app.9 This controller uses theURLpath to select a page template to
render. Normally this is under src/Template/Pages in the application directory. Unlike the
version of the controller in the skeleton app, the “Bookmarker” controller does not perform
sufficient checks on the supplied path. By passing a path containing the /../ directory
traversal sequence (using double URL-encoded slashes), an attacker can point the renderer
at files outside the intended directory.

Exploitation of this vulnerability is limited by two factors in the View class. First, code in
_getViewFileName appends the configured extension (.ctp by default) to the file name.
Second, _checkFilePath validates that the normalized path is within the configured tem-
plates directory. These limitations prevent an attacker from reading arbitrary files, but an
attacker may still trigger the rendering of arbitrary application templates, which may expose
sensitive information.

Additionally, because _checkFilePath throws a distinctive exception, an attacker can probe
for the existence of .ctp files at any path. The following screenshots demonstrate the differ-
ent outputs:
8https://book.cakephp.org/3.0/en/tutorials-and-examples/bookmarks/intro.html
9https://book.cakephp.org/3.0/en/controllers/pages-controller.html

16 | CakePHP Security Assessment

https://github.com/cakephp/bookmarker-tutorial/blob/faf9e00369cd8672af8332aa48881c53f162229b/src/Controller/PagesController.php
https://book.cakephp.org/3.0/en/tutorials-and-examples/bookmarks/intro.html
https://book.cakephp.org/3.0/en/controllers/pages-controller.html


Figure 1: File does not exist

Figure 2: File exists

17 | CakePHP Security Assessment



Reproduction Steps With the “Bookmarker” tutorial application running on localhost, issue the following com-
mands:
# render "list tags" template
# note that tags themselves are not actually shown
curl -is 'http://localhost:8765/pages/..%252fTags/index'

# probe for .ctp files
touch /tmp/good.ctp
curl -is 'http://localhost:8765/pages/..%252f../..%252f../..%252f../tmp/good' \

| head # returns 500 status
curl -is 'http://localhost:8765/pages/..%252f../..%252f../..%252f../tmp/bad' \

| head # returns 404 status

Recommendation Update the tutorial and the corresponding GitHub project10 to perform an explicit test for
the /../ sequence in the Pages controller, and do not render the template if the sequence
is found.
10https://github.com/cakephp/bookmarker-tutorial

18 | CakePHP Security Assessment

https://github.com/cakephp/bookmarker-tutorial


Finding AutoLink Functions Use Predictable and Collision-Prone Hashes
Risk Low Impact: Low, Exploitability: Low

Identifier NCC-CakePHP_2017-016

Category Cryptography

Location src/View/Helper/TextHelper.php: 170

Impact Mixing trusted and untrusted text into autoLink functions may result in malicious links in
trusted text, or trusted links in malicious text.

Description The autoLink functions for automatically converting URLs and email addresses into links do
so by first replacing those values with their MD5 hashes. The functions then replace those
hashes with HTML to make them links. A hash of b48def645758b95537d4424c84d1a9ff
would be replaced with <a href="mailto:foo@example.com">foo@example.com</a>.

The HTML is stored in an associative array before it replaces the hashes in the text, and this
array is keyed with the hashes themselves. To replace the hashes in the text with the HTML,
the keys of the associative array are iterated across, replacing any instances of them in the
text with their associated values. Since the hashes are predictable, it is possible for a user
to include MD5 sums of already existing URLs or email addresses in the text they submit to
the application, which will then be replaced when the text is processed with an autoLink

function.

Additionally, due to weakness in MD5, an attacker might be able to craft a malicious URL or
email address that, when hashed, collides with an already present URL or email address. In
this scenario, the last seen URL or email address will have its HTML link replace all others.

The order of operations of the autoLink functions is below:

1. The text is scanned and modified, with URLs and email addresses replaced by their MD5
hashes.

2. HTML links are constructed and placed into an associative array keyed on theMD5 hashes
from the matches from the previous step.

3. The text is scanned and modified. Any keys from the associative array found in the text
are replaced with their respective values.

Before autoLink:
foo@example.com b48def645758b95537d4424c84d1a9ff

After autoLink:

<a href="mailto:foo@example.com">foo@example.com</a> <a href="mailto:foo@example
.com">foo@example.com</a>

Recommendation Use an HMAC with a nonce generated from a cryptographically secure random number
generator as its key to create MACs as placeholders. This provides both unpredictability
and resistance to collisions, even if the underlying hashing function is compromised.

19 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/TextHelper.php#L170


Finding Inconsistent Configuration of Transport Encryption Protocols
Risk Low Impact: High, Exploitability: Low

Identifier NCC-CakePHP_2017-019

Category Cryptography

Location src/Netwok/Socket.php: 86 - 97

Impact The use of insecure communication protocols increases the risk of compromise.

Description There aremultiple protocols in the TLS/SSL family: SSL v2, SSL v3, and TLS v1.0-1.3. Of these:

• SSL v2 is insecure and must not be used.
• SSL v3 is insecure when used with HTTP and weak when used with other protocols. It is
obsolete and should not be used.

• TLS v1.0 is largely still secure; there are no known major security flaws when it is used
for protocols other than HTTP. When used with HTTP, it can be made secure with careful
configuration and use of the correct cipher suites.

• TLS v1.1 and TLS v1.2 have no known security issues.
• TLS v1.3 is in a “draft” state, and is not supported in PHP.

CakePHP’s Socket utility class defines supported encryptionmethods using the following PHP
constants:
/**
* Contains all the encryption methods available
*
* @var array
*/
protected $_encryptMethods = [

// @codingStandardsIgnoreStart
'sslv2_client' => STREAM_CRYPTO_METHOD_SSLv2_CLIENT,
'sslv3_client' => STREAM_CRYPTO_METHOD_SSLv3_CLIENT,
'sslv23_client' => STREAM_CRYPTO_METHOD_SSLv23_CLIENT,
'tls_client' => STREAM_CRYPTO_METHOD_TLS_CLIENT,
'sslv2_server' => STREAM_CRYPTO_METHOD_SSLv2_SERVER,
'sslv3_server' => STREAM_CRYPTO_METHOD_SSLv3_SERVER,
'sslv23_server' => STREAM_CRYPTO_METHOD_SSLv23_SERVER,
'tls_server' => STREAM_CRYPTO_METHOD_TLS_SERVER
// @codingStandardsIgnoreEnd

];

The meanings of the *_SSLv23_* and *_TLS_* constants vary across the versions of PHP
supported by CakePHP:

• Prior to 5.6.7:11
– SSLv23 allowed either SSLv2 or SSLv3.
– TLS allowed TLSv1.0 or greater.

• From 5.6.7 to 7.1.10:12
– SSLv23 allowed TLSv1.0 or greater, but not either version of SSL.
– TLS specified TLSv1.0 exactly.
– TLS_ANY was introduced to allow TLSv1.0 or greater.

11https://github.com/php/php-src/blob/PHP-5.6.6/main/streams/php_stream_transport.h
12https://github.com/php/php-src/commit/10bc5fd4

20 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Network/Socket.php#L81-L97
https://github.com/php/php-src/blob/PHP-5.6.6/main/streams/php_stream_transport.h
https://github.com/php/php-src/commit/10bc5fd4c4c8e1dd57bd911b086e9872a56300a0#diff-714485dc5d2ba8617ba0cb2dbfb7cd36


• As of 7.2:13, 14
– All three of these constants allow TLSv1.0 or greater.

As a consequence, while it is possible to configure a secure version of TLS for connections,
the correct value to do so varies. Many users will, if they specify “tls”, be limited to TLSv1.0.
Users on very early versions of PHP 5.6 may accidentally configure the use of insecure SSL
protocols. There is no way for users to specify TLSv1.1+ or TLSv1.2 only.

Additionally, CakePHP does not provide granular controls over the cipher suites (a combi-
nation of algorithms that provide encryption, authentication, and communications integrity
when negotiating a secure TLS/SSL connection) used with the socket.15 This makes it impos-
sible for users to make appropriate security decisions regarding the type of encryption used
to protect their application’s communications.

Recommendation Provide an unambiguous way for users to specify use of the best available protocol. Ideally,
this should be the default, and opting out of a newer protocol or into an older protocol should
require an extra flag or method call. Currently, TLS v1.2 should be the primary protocol, with
TLS v1.1 being available as its fallback.

Additionally, the class should allow users to specify cipher suites, with a secure default. The
page “Security/Server Side TLS” on the Mozilla Wiki16 can be used as a reference.
13https://github.com/php/php-src/commit/bec91e11
14As of early October 2017, PHP 7.2 is in Release Candidate status.
15In the absence of explicit configuration, PHP will use OpenSSL’s DEFAULT set of cipher suites.
16https://wiki.mozilla.org/Security/Server_Side_TLS

21 | CakePHP Security Assessment

https://github.com/php/php-src/commit/bec91e1117fd3527897cde2f8a26eab9a20fa3dc#diff-714485dc5d2ba8617ba0cb2dbfb7cd36
https://wiki.mozilla.org/Security/Server_Side_TLS


Finding Form Validation Tokens Are Not Associated with Users
Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-CakePHP_2017-020

Category Access Controls

Location src/View/Helper/SecureFieldTokenTrait.php: 55 - 61

Impact Form validation tokens may potentially be used to escalate privileges within applications.

Description Form validation tokens may be used by an application to prevent form fields from being
tampered with. The following data is collected, signed, and then embedded in forms:

$hashParts = [
$url,
serialize($fields),
$unlocked,
Security::getSalt()

];

The $url and Security::getSalt() are not visible to users and not embedded directly
into the form as part of the token, but are collected with the other data to be signed.17 The
signature is included in the token.

A page might be designed to present two different “views” of the same form, showing dif-
ferent protected fields and the same field names or users with two different privilege levels.
An “edit user” page, for example, might only allow a user to change their own password,
while allowing an administrator to change username and password. In the event that an
administrator’s form validation token is compromised, an unprivileged user could replace
their own form validation token with that of the administrator’s, granting them additional
privileges on their own edit user page.

Recommendation In addition to the URL, include the user’s session in the data that is signed, but not embedded
into forms.
17See finding NCC-CakePHP_2017-021 on the following page for the security implications of the signature
implementation.

22 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/SecureFieldTokenTrait.php#L55-L61


Finding Form Validation Tokens Are Vulnerable to Potential Hash Collisions
Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-CakePHP_2017-021

Category Cryptography

Location src/View/Helper/SecureFieldTokenTrait.php: 55 - 61

Impact Collisions in SHA-1 may be exploited to bypass form validation.

Description Form validation tokens are given to the user alongside a signature, intended to prevent
tampering. The tokens include information about form fields that are allowed or not allowed
to be modified. The signature is a SHA-1 hash of the token with a secret appended.

While this method seems secure, a SHA-1 collision could be abused to forge validation to-
kens. The output of SHA-1 is its own internal state, allowing hashes to be “extended” by set-
ting the internal state of SHA-1 to that of any output of SHA-1, and then providing additional
input.

This issue is mitigated by the format requirements of the security token, which add a great
deal of difficulty to finding a collision, as an invalid format will cause errors before the signa-
ture is validated.

The following pseudo-code demonstrates a SHA-1 length extension:

$hashFunction = sha1->new();
$state = $hashFunction->hash('foobar');
echo $state; // 8843d7f92416211de9ebb963ff4ce28125932878

$hashFunction = sha1->new();
$state = $hashFunction->hash('foo');
echo $state; // 0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33

$hashFunction = sha1->setState($state);
$state = $hashFunction->hash('bar');
echo $state; // 8843d7f92416211de9ebb963ff4ce28125932878

An attacker that can find a collision, such that sha1($collision) === sha1($token), can
forge the security token by simply replacing it with $collision.

When the server validates the collided token and its signature, it will append the secret to
the token, hash it with SHA-1, and then compare the output to the signature that the attacker
has also provided. Since the internal state of SHA-1 after processing $collision is identical
to the internal state after processing $token, the output of SHA-1 will be identical after the
secret is appended to either.

HMAC functions are immune to these issues, even if collisions are found in their underlying
hash functions.

Recommendation Use an HMAC function to sign form validation tokens.

23 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/View/Helper/SecureFieldTokenTrait.php#L55-L61


Finding Asset Middleware Can Serve Dot Files
Risk Low Impact: Low, Exploitability: Medium

Identifier NCC-CakePHP_2017-022

Category Data Exposure

Location src/Routing/Middleware/AssetMiddleware.php

Impact If an application has sensitive internal “dot files” under the web root directory, an attacker will
not be prevented from retrieving them.

Description Web servers are often configured to refuse to serve files and directories with a leading dot
character, such as .htaccess or .git/, as these files often contain sensitive information.
CakePHP’s asset middleware does not enforce such a restriction.

Recommendation Modify the __invoke method of AssetMiddleware to disallow serving of files where any
component of the path begins with a dot.

24 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Routing/Middleware/AssetMiddleware.php


Finding Setters of Entity Attributes Are Not Always Called
Risk Informational Impact: Medium, Exploitability: Unknown

Identifier NCC-CakePHP_2017-002

Category Data Validation

Location src/ORM/Marshaller.php: 574 - 579

Impact Unexpected results may occur within an application that relies upon setters to always be
called.

Description When updating an object, the ORM does not mark NULL, scalars,18 or objects19 as “dirty”
if they are identical to already persisted values. If something is not marked “dirty,” it is not
treated as modified and various actions are not taken, such as calling their associated setters.

Note: This is not an intrinsic security issue.

Recommendation Document this behavior.
18https://secure.php.net/manual/en/function.is-scalar.php
19https://secure.php.net/manual/en/function.is-object.php

25 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/ORM/Marshaller.php#L574-L579
https://secure.php.net/manual/en/function.is-scalar.php
https://secure.php.net/manual/en/function.is-object.php


Finding Insecure Default Hashing Algorithm
Risk Informational Impact: High, Exploitability: Unknown

Identifier NCC-CakePHP_2017-006

Category Cryptography

Location src/Utility/Security.php: 33

Impact An attacker may be able to compromise the security of applications built with the CakePHP
framework by colliding SHA-1 hashes.

Description A cryptographic hash is a function that takes a string of bytes and returns a small, fixed-size
value. Hash functions guarantee that the same input always results in the same output. When
used for security, the most important property of a hash function is that it is impossible for an
attacker to produce two inputs that hash to the same value (called a collision). Hashes that
do not have this property are considered to be insecure.

The CakePHP framework provides a Security::hash function, which defaults to the SHA-1
algorithm:

/**
* Default hash method. If `$type` param for `Security::hash()` is not specified
* this value is used. Defaults to 'sha1'.
*
* @var string
*/

public static $hashType = 'sha1';

Theoretical attacks on SHA-1 have been known to exist since 2005,20 and have recently been
demonstrated inpractice.21 SHA-1hasbeendeprecated for signaturepurposesby theUnited
States National Institute of Standards and Technology (NIST) since 2011.22 Consequently,
applications should migrate to the SHA-2 or SHA-3 algorithm families for secure hashing.

Recommendation Use a hashing algorithm without known vulnerabilities, such as SHA-2 (SHA-256 / SHA-512)
or SHA-3.
20https://en.wikipedia.org/wiki/SHA-1#Attacks
21https://shattered.io/
22https://csrc.nist.gov/publications/detail/sp/800-131a/archive/2011-01-13

26 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Utility/Security.php#L27-L33
https://en.wikipedia.org/wiki/SHA-1#Attacks
https://shattered.io/
https://csrc.nist.gov/publications/detail/sp/800-131a/archive/2011-01-13


Finding Certificate Authority Bundle Includes Untrustworthy CAs
Risk Informational Impact: Informational, Exploitability: Informational

Identifier NCC-CakePHP_2017-007

Category Configuration

Location config/cacert.pem

Impact An attackermay be able to use a collision attack to forge a valid certificate signed using SHA-1
and perform a server-impersonation attack.

Description CakePHP uses Mozilla’s Certificate Authority (CA) Bundle from January 20, 2016. This bundle
is out of date and includes a number of untrustworthy CA Root Certificates fromWoSign and
StartCom.

Mozilla discovered multiple problems in the SSL certificate issuance process of WoSign,
a China-based certificate authority. The investigation also revealed that in 2015, WoSign
silently acquired StartCom, a CA based in Israel, without disclosing the deal to browser
vendors who operate certificate root programs.23

Some of the most egregious violations of theWoSign CA include 64 cases of WoSign issuing
certificates signed with SHA-1 after the sunset date, January 1, 2016. Additionally, WoSign
backdated these certificates to hide their misdeeds.

Recommendation Update CakePHP’s CA bundle to Mozilla’s current CA Root Certificate bundle. Develop a
process that will ensure that CakePHP’s CA bundle will remain up to date.
23https://www.pcworld.com/article/3137240/security/google-to-untrust-wosign-and-startcom-certificates.html

27 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/config/cacert.pem
https://www.pcworld.com/article/3137240/security/google-to-untrust-wosign-and-startcom-certificates.html


Finding Insecure UUID Function
Risk Informational Impact: Medium, Exploitability: Informational

Identifier NCC-CakePHP_2017-008

Category Cryptography

Location src/Utility/Text.php: 42-62

Impact Users of CakePHP may inadvertently make themselves vulnerable to UUID collision attacks
that could result in unauthorized access.

Description CakePHP includes a function to generate Universally Unique Identifiers (UUIDs). This func-
tion, Text::uuid(), produces version 4 UUIDs, which are based on pseudo-random num-
bers.24 It uses mt_rand, which is not a cryptographically secure random number generator,
to generate these:

public static function uuid()
{

return sprintf(
'%04x%04x-%04x-%04x-%04x-%04x%04x%04x',
// 32 bits for "time_low"
mt_rand(0, 65535),
mt_rand(0, 65535),
// 16 bits for "time_mid"
mt_rand(0, 65535),
// 12 bits before the 0100 of (version) 4 for "time_hi_and_version"
mt_rand(0, 4095) | 0x4000,
// 16 bits, 8 bits for "clk_seq_hi_res",
// 8 bits for "clk_seq_low",
// two most significant bits holds zero and one for variant DCE1.1
mt_rand(0, 0x3fff) | 0x8000,
// 48 bits for "node"
mt_rand(0, 65535),
mt_rand(0, 65535),
mt_rand(0, 65535)

);
}

Internally, the CakePHP framework does not use UUIDs generated by Text::uuid() in any
security related contexts. It uses them as part of the Message-ID mail header as well as for
seeding the random number generator used in Security::insecureRandomBytes().

The comments for this function warn users against using its return value as a seed for cryp-
tographic operations, however this may not be sufficient to protect against misuse. Users of
the CakePHP frameworkmay unintentionally use this function in non-obvious security related
contexts and become vulnerable.

If a user has preconceived notions of what a version 4 UUID should be they may use them in
a way that makes them vulnerable. For example, a user makes a photo-sharing application
where each photo corresponds to a URL of the format “https://example.com/photo/{v4
uuid}”. If they read the Wikipedia entry for Universally Unique Identifier,25 they may assume
that the chance of a collision occurring is so low they do not need to worry about someone
brute forcing their way into obtaining access to the photos.
24https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_.28random.29
25https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_.28random.29

28 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Utility/Text.php#L42-L62
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_.28random.29
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_.28random.29


Recommendation In the short term, the comments for this function should be more explicit in their warnings
about using uuid() in any security related contexts.

Long term, the CakePHP framework should rewrite this function to use a cryptographically
secure random number generator and generate version 4 UUIDs compliant with RFC4122.26

26https://tools.ietf.org/html/rfc4122

29 | CakePHP Security Assessment

https://tools.ietf.org/html/rfc4122


Finding Digest Authentication Uses MD5 Algorithm to Construct Nonces
Risk Informational Impact: Low, Exploitability: None

Identifier NCC-CakePHP_2017-011

Category Cryptography

Location src/Auth/DigestAuthenticate.php: 250-257

Impact This is an informational finding only, however it is considered a best practice to avoid the use
of the deprecated MD5 algorithm.

Description HTTP Digest Authentication uses a nonce value to protect against replay attacks. The speci-
fication27 does not define how these values are to be generated or verified, but the use of a
signed timestamp is a common pattern. CakePHP implements this pattern with the signature
MD5( timestamp || secret ).

While there are no known practical attacks against the construct used here, the MD5 algo-
rithm is considered insecure.28 Practical collision attacks against MD5 have been demon-
strated, and a theoretical preimage attack has been shown to exist.

Recommendation Replace this use ofMD5with anHMAC construction using amodern cryptographic hash such
as SHA-2 (256 or 512) or SHA-3.
27https://tools.ietf.org/html/rfc2617#section-4.3
28https://en.wikipedia.org/wiki/MD5#Security, https://www.kb.cert.org/vuls/id/836068

30 | CakePHP Security Assessment

https://github.com/cakephp/cakephp/blob/0a5bf84d3bb07108acc5e832315388baa1a4b604/src/Auth/DigestAuthenticate.php#L250-L257
https://tools.ietf.org/html/rfc2617#section-4.3
https://en.wikipedia.org/wiki/MD5#Security
https://www.kb.cert.org/vuls/id/836068


Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these rec-
ommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.
High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale

breach.
Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the

application.
Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation upon the target system or systems. It takes into account potential
losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.
Medium Attackers would need to leverage a third party, gain non-public information, exploit a race

condition, already have privileged access, or otherwise overcome moderate hurdles in order to
exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

31 | CakePHP Security Assessment



Category
NCCGroup categorizes findings basedon the security area towhich those findingsbelong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.
Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.
Configuration Related to security configurations of servers, devices, or software.
Cryptography Related to mathematical protections for data.
Data Exposure Related to unintended exposure of sensitive information.
Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.
Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.
Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

32 | CakePHP Security Assessment



Appendix B: XMLDenial of Service Reproduction Steps

The following steps can be used to reproduce finding NCC-CakePHP_2017-018 on page 11:

1. Save the following Python script as build_quadxml.py:

#!/usr/bin/python

def main():
print "<?xml version=\"1.0\"?>"
print "<!DOCTYPE data ["
print "<!ENTITY a "
print "\"" + 'a'*(2**16) + "\">"
print "]>"
print "<data>"
print "&a;"*((2**16))
print "</data>"

if __name__ == "__main__":
main()

2. Run the following command:

python build_quadxml.py > /tmp/quad.xml

3. Create a CakePHP application. Ensure that the SimpleXML extension is installed and enabled.29

4. Create the following files in the application’s directory:

src/Controller/PocController.php:

<?php
namespace App\Controller;
use App\Controller\AppController;

class PocController extends AppController
{

public function quadxml() { }
}
?>

src/Template/Poc/quadxml.ctp:

<?php
use Cake\Utility\Xml;
use Cake\Utility\Exception\XmlException;

print "XML DoS - Quadratic Blowup";
$xml = Xml::build('/tmp/quad.xml');
print $xml;
?>

5. Run the application with ./bin/cake server, and browse to http://localhost:8765/poc/quadxml

6. Observe that an error page is returned after a delay of up to 60 seconds.

7. Additionally, check the CakePHP console output for output similar one of the following messages:

[Fri Aug 11 14:50:46 2017] PHP Fatal error: Maximum execution time of 60 seconds exceeded in
/home/b/cakephp/bookmarker/src/Template/Poc/xml.ctp on line 486

29On Ubuntu: apt install php7.0-xml

33 | CakePHP Security Assessment

http://localhost:8765/poc/quadxml


mmap() failed: [12] Cannot allocate memory

34 | CakePHP Security Assessment


	Executive Summary
	Synopsis
	Scope
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	XML Denial of Service Reproduction Steps

