

Security Audit Report for the Mozilla Secure Open Source Fund
GNU libmicrohttpd (MHD)

Overview
The Least Authority security consultancy performed a security audit of the GNU libmicrohttpd
library, on behalf of Mozilla’s Secure Open Source Fund. GNU libmicrohttpd
(https://www.gnu.org/software/libmicrohttpd/) is a C library with about 35,000 lines of code to
allow developers to embed HTTP server functionality into their applications, of which about
19,000 lines of code are for the directory containing the library C header files and about 16,000
lines of test code.

Background
Recently, the GNU libmicrohttpd team of Christian Grothoff and Evgeny Grin (co-maintainers)
have completed the features and consider the project ready for version 1.0. In accordance with
their plans for this significant release, they would like to have the code audited to ensure it is
more secure. Previously, the code was audited twice by RedHat and Ubuntu. Although only
minor issues were discovered in both of these audits, the code base has grown significantly
since the last review. The primary concern for the audit is that the code is of the highest quality
as possible, not the speed of the release, especially due to the number of other projects that are
dependent on the GNU libmicrohttpd library.

Coverage

Target Code and Revision
All file references are based on the version 0.9.52 and git tag of the GNU libmicrohttpd
codebase, which has revision id:

938b9b8dae70739c6e629bf144b57b5d6212e6b1

1

https://www.gnu.org/software/libmicrohttpd/

All file references use Unix-style paths relative to the working directory root.

Dependencies

Although our primary focus was on the application code, we examined dependency
code and behavior where relevant to a particular line of investigation.

The dependencies are GNU TLS library for https support and curl for testing, these were not
reviewed.

Strategy
We determined that the following activities would be the primary focus of our audit work:

● Manual code review with some automated tests and analysis.
● Analyze the protocol parser.
● Look for vulnerabilities with multi-threading (MHD has 4 threading modes)
● Review the code changes since last audits or the otherwise less reviewed code.
● Look at the implementation and use of the standard libraries.
● Look for opportunities for Denial of Service attacks in scope.

Manual Code Review
In manually reviewing the code, we looked for any potential issues with code logic or formatting,
error handling, protocol and header parsing, memory/array out of bounds read/writes and other
related issues. This included looking for misleading indentation errors that could produce some
unintended consequences, usages of sprintf() that could potentially lead to format string
attacks, usages of unbounded string functions, malloc() 's without free() 's, double free()
(i.e. free() called on an already freed pointer, reads from the network etc.). We looked
carefully at all the network facing code and see if any buffers leak any secrets. We looked at the
parsers with an eye on the strict compliance with the protocols it is implementing and report the
deviations, if any.

The files we manually reviewed included:

● base64.c
● basicauth.c
● connection.c
● daemon.c
● digestauth.c
● internal.c
● memorypool.c
● md5.c

2

● postprocessor.c
● response.c
● mhd_str.c
● mhd_threads.c
● mhd_sockets.c

Code Analysis
In addition to manually reviewing the code, we used a few other tools to analyze potential
problems. Some tools that we attempted to use are:

● gcc’s address sanitizer (asan) to find double frees, buffer overflow and other memory
bugs.

● gcc’s undefined behaviour sanitizer (ubsan) to detect C undefined behaviour.
● gcc’s thread sanitizer (tsan) to detect race conditions.
● Clang’s static analyzer scanbuild.
● cppcheck, another static analyser.
● David Wheeler's flawfinder.
● American Fuzzy Lop (afl) to look for parsing bugs.

We also compiled the source code with -Wall -pedantic and look at all the warnings (if any)
and formatted the code using astyle to reveal any formatting bugs in C code. After the Apple’s
“goto fail” and “gnutls” vulnerabilities, gcc has added a flag -Wmisleading-indentation to
detect and warn for bugs caused by indentation.

We wrote test cases to evaluate the features of the library, writing and extending test programs
(as preparation for fuzzing). We reviewed tests in the library and add any that will highlight any
bugs. (Note: These have not been submitted to the upstream maintainers yet.) We reviewed the
documentation.

Fuzzing
We performed fuzzing with American fuzzy lop (AFL) to look for parsing related bugs, such as
unintended behaviors and potential errors, by generating valid input cases for the program. We
were looking for opportunities for an attacker to crash or use semi-valid input to perform specific
behaviors within MHD. AFL could potentially report bugs in the parsers where for certain inputs,
the parser goes into an undefined state and then after, rejects valid inputs, effectively doing
Denial of Service. It could also expose bugs where certain types of inputs could cause memory
safety related bugs (like the Heartbleed attack). In order to do the fuzzing, we created and
extended test programs that could be added to the MHD’s build system.
We chose AFL to look for parsing related bugs because of its popularity and high level of code
coverage. Since AFL works only on stdin/stdout/stderr, we used a certain modified version that

3

http://lcamtuf.coredump.cx/afl/

works for network clients and servers. We did not run AFL tests on all possible modes in MHD
as AFL takes a long time to perform the fuzzing. We ran it for certain inputs with some test
programs. In all cases, AFL ran (sometimes for several days) without any hangs or crashes and
we did not find any problems.

Not in Scope
We did not do a performance analysis of GNU libmicrohttpd during this audit. The dependencies
(GNU TLS library for https support and curl for testing) were not reviewed.

Findings

Code Selection
GNU microhttpd is targeted to run on wide ranging devices from low power router hardware to
large machines, driving the choice to write it in C. Often, C is also chosen for compatibility with
certain resource-constrained environments. However, C standards, for various historical
reasons, have made choices that makes writing secure programs hard, but not impossible.
Because of this, we want to note that C is not necessarily the safest choice for writing such a
library. Nonetheless, we understand and respect the selection of the authors and proceeded
with our review of the code with the goal of making it more secure despite this.

Code Quality
Overall, we would like to note that the quality of the code reviewed was impressive, even
considering the many lines of code included. It is clear that the project authors and maintainers
have dedicated themselves to a high standard of development, both with writing and reviewing
code. The two previous audits of this project surely contributed to the high standard for security,
too. With this in mind, we found ourselves further challenged to look for vulnerabilities and
opportunities for improvements. If all projects were written to this standard, there would be far
fewer attacks on the open source projects that contribute to the current state of technology.

Issues
We list the issues we found in the library in the order we found and reported them.

Issue A: Use of a file descriptor before it is initialized, when compiled with
all warnings on (-Wall)
Severity: Low

4

Synopsis: We found an uninitialized file descriptor being used when the library is compiled with
-Wall , which has not been open ’ed in daemon.c. Compilation with these options revealed a
file descriptor used before initialization warning in daemon.c:1870 (sendfile(...)) function,
which appears genuine.

Technical Details: In daemon.c, file descriptor variable, fd has not been initialized and is
being passed in the code below. In Linux kernel, sendfile(2) system call allows copying
from one file descriptor to another without the data getting into the userspace (as one would do
with a read(2) and write(2) system calls), thereby making it very efficient.

 offset = (off64_t) offsetu64;
 if ((offsetu64 <= (uint64_t) OFF64_T_MAX) &&
 (0 < (ret = sendfile64 (connection->socket_fd,
 fd ,
 &offset,
 left))))

Mitigation: We recommend to initialize the file descriptor. This has already been fixed in the git
‘master’ branch. There is a proliferation of #ifdef macros for portability. The number of code
paths that is possible with N such macros is in the order of 2 N . It would be nice on the code
reader if the macros are reduced to the absolute minimum required.

Remediation: We recommend compiling with warnings on(i.e. -Wall), all the time or may be
with -Werror that will turn warnings into error.

Status: This was reported to the MHD team and we believe it has already been fixed.

Issue B: Use of unbounded string functions
Severity: Medium
Synopsis: We found multiple uses of unbound versions of string functions (string formatting,
string copy, etc.) during our manual code review.

Technical Details: String formatting functions write out strings in a given buffer by representing
the given input data in the specified format. E.g.:
 char buf[10];
 char *str = “hello world”;
 sprintf(buf, “%s”, str);

Other functions like strcpy(3) copy the given source string to a destination string. These
functions assume a properly NULL terminated string as a source string and do not check

5

whether the destination string is long enough to hold the source string. The use of such
functions are a common source of buffer overflow bugs. The use of bounded version of such
functions (like strncpy(3) or strlcpy(3)) is safer.

Impact: If the input in the string is too long it will overflow and write arbitrary data into adjacent
memory. Buffer overflows may be unknowingly caused by modifications during refactoring if the
string to be written into is defined elsewhere as a macro.

Preconditions: For this vulnerability to be exploitable, the input string should be controllable by
the attacker via input, so that it could overwrite adjacent buffers and thereby control their values
as well.

Technical Details: in connection.c we found the following occurrences of unbounded string
functions:

 sprintf (date,
 "Date: %3s, %02u %3s %04u %02u:%02u:%02u GMT\r\n",
 days[now.tm_wday % 7],
 (unsigned int) now.tm_mday,
 mons[now.tm_mon % 12],
 (unsigned int) (1900 + now.tm_year),
 (unsigned int) now.tm_hour,
 (unsigned int) now.tm_min,
 (unsigned int) now.tm_sec);

…

 sprintf (code,
 "%s %u %s\r\n",
 (0 != (connection->responseCode & MHD_ICY_FLAG))
 ? "ICY"
 : ((MHD_str_equal_caseless_ (MHD_HTTP_VERSION_1_0,
 connection->version))
 ? MHD_HTTP_VERSION_1_0
 : MHD_HTTP_VERSION_1_1),
 rc,
 reason_phrase);

...

6

content_length_len
 = sprintf (content_length_buf,
 MHD_HTTP_HEADER_CONTENT_LENGTH ": "
MHD_UNSIGNED_LONG_LONG_PRINTF "\r\n",
 (MHD_UNSIGNED_LONG_LONG)
connection->response->total_size);

…

off += sprintf (&data[off],
 "%s: %s\r\n",
 pos->header,
 pos->value);

...

 if (MHD_CONNECTION_FOOTERS_RECEIVED == connection->state)

{
 strcpy (&data[off],
 date);
 off += strlen (date);

}

…

 if (0 == nc)

{
 /* Fresh nonce, reinitialize array */
 strcpy (nn->nonce,
 nonce);
 …
 …
 return MHD_YES;

}

…

daemon->custom_error_log = (MHD_LogCallback) &vfprintf;

7

…

Mitigation: A safer way for string construction and copy function would be to use the bounded
versions that also take a maximum length as input. The sprintf function has a bounded
version, snprintf . The vfprintf() function in glibc has had a number of vulnerabilities in
the past. We think it would be best to avoid the use of it if possible. An alternative would be to
use a combination of vsnprintf() to write into a string and then use fprintf to write the
resulting string into the given file descriptor. Since it is being used for logging in this case, just
rewriting the code to use the non-variable-length argument functions might be sufficient.

Remediation: It may be a good idea to avoid the unsafe versions of C string manipulation and
formatting functions and instead use the safe, bounded variants of them.

Issue C: Whitespace RFC 7230 header rules noncompliance
Severity: Low
Synopsis: HTTP 1.1 is defined by RFC 7230 which supercedes RFC 2616. Appendix A.2 lists
the changes in RFC 7230 with respect to RFC 2616. We found that there is a compliance issue
with the header rules in connection.c. Appendix A.2 in rfc7230 mandates that headers (which
are of the form "field: value") should not have any trailing whitespaces in the "field name" part
after the name and before the ':'. Invalid whitespaces around field-names are now required to be
rejected - according to the RFC 7230 Section
(3.2.4)(https://tools.ietf.org/html/rfc7230#section-3.2.4). Here is the relevant text from Appendix
A.2 in RFC 7230:

“Invalid whitespace around field-names is now required to be rejected, because
accepting it represents a security vulnerability. The ABNF productions defining header
fields now only list the field value.”

Impact: Invalid whitespaces around field-names is now required to be rejected with an HTTP
400 Bad Request response. But MHD does not handle it for the version we audited. We tested
for headers spanning multiple lines and there was a correct HTTP 400 Bad Request response,
so we think the impact of this issue is minor.

Preconditions: For this vulnerability to be exploitable, the HTTP client needs to send a request
with a header field name with spaces of this form.

curl hostname:port -H 'header with spaces: value'

Technical Details: From reading the code in connection.c, it looks like this is not handled by
MHD: The following are the relevant functions.

8

https://tools.ietf.org/html/rfc7230#section-3.2.4

process_broken_line(),
process_header_line(),
parse_connection_headers()

We tested with a simple example and it does not return a HTTP 400 (Bad request) as mandated
by the standard.

Also this session with the src/microhttpd/examples/minimal_example server shows that the
library does not handle it properly:

1. On one terminal window, start minimal_server:
$./minimal_server 8080

2. On another terminal window:

 Case 1: Valid header. Correct response from the server.

$ curl -vv localhost:8080 -H 'Host: 127.0.0.1'
* Rebuilt URL to: localhost:8080/
* Trying ::1...
* TCP_NODELAY set
* connect to ::1 port 8080 failed: Connection refused
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET / HTTP/1.1
> Host: 127.0.0.1
> User-Agent: curl/7.52.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Content-Length: 90
< Date: Fri, 07 Apr 2017 09:13:55 GMT
<
* Curl_http_done: called premature == 0
* Connection #0 to host localhost left intact
<html><head><title>libmicrohttpd
demo</title></head><body>libmicrohttpd demo</body></html>

 Case 2: Invalid header. Incorrect response from the server.

$ curl -vv localhost:8080 -H 'Host : 127.0.0.1'

9

* Rebuilt URL to: localhost:8080/
* Trying ::1...
* TCP_NODELAY set
* connect to ::1 port 8080 failed: Connection refused
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.52.1
> Accept: */*
> Host : 127.0.0.1
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Content-Length: 90
< Date: Fri, 07 Apr 2017 09:13:49 GMT
<
* Curl_http_done: called premature == 0
* Connection #0 to host localhost left intact
<html><head><title>libmicrohttpd
demo</title></head><body>libmicrohttpd demo</body></html>

 Case 3: Invalid header. Incorrect response from the server.

$ curl -vv localhost:8080 -H 'Host name: 127.0.0.1'
* Rebuilt URL to: localhost:8080/
* Trying ::1...
* TCP_NODELAY set
* connect to ::1 port 8080 failed: Connection refused
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.52.1
> Accept: */*
> Host name: 127.0.0.1
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Content-Length: 90
< Date: Fri, 07 Apr 2017 09:13:42 GMT

10

<
* Curl_http_done: called premature == 0
* Connection #0 to host localhost left intact
<html><head><title>libmicrohttpd
demo</title></head><body>libmicrohttpd demo</body></html>

Remediation: Although of minor impact, it would still be better if the MHD complies strictly with
the RFC 7230 standards.

Status: The issue exists in the version we audited.

Suggestions

Suggestion 1: Improvements to daemon.c
Severity: Informational
Synopsis:

1. daemon.c:5375 - The body of this if statement is always executed. We could as well
omit the if and just put the body in there.

 /* Always use individual control ITCs */
 if (1)
 {
 if (! MHD_itc_init_ (d->itc))
 {
#ifdef HAVE_MESSAGES
 MHD_DLOG (daemon,
 _("Failed to create worker
inter-thread communication channel: %s\n"),
 MHD_itc_last_strerror_());
#endif
 goto thread_failed;
 }
 }

 2. daemon.c:internal_add_connection() function - variable ‘eno’ can potentially get used
before initialization.

11

Project Team
Ramakrishnan Muthukrishnan: Code Reviewer
Ramakrishnan (Ramki) is a Debian developer and lives in Bangalore, India. He has contributed
to a bunch of Free software projects like GNU Emacs, Linux kernel and the GNU Radio. He
likes to tinker with low-level system software and also enjoys learning and playing with
Functional Programming.

Liz Steininger: Project Manager
Liz is a supporter of open source software that encourages transparency and access to
information, along with software that enables individuals to freely express themselves and retain
the ability to control their own information. She has over 15 years of experience as a Program
and Project Manager, Strategist and Analyst working towards these goals.

Zooko Wilcox: Advisory Security Analyst
Zooko has more than 20 years of experience in open, decentralized systems, cryptography and
information security, and startups. He is recognized for his work on DigiCash, Mojo Nation,
ZRTP, “Zooko's Triangle”, Tahoe-LAFS, BLAKE2, and SPHINCS. He is also the Founder of
Least Authority. He sometimes blogs about health science. He tweets a lot.

Daira Hopwood: Advisory Security Analyst
Daira Hopwood participated in the standardization of the TLS protocol and Internationalized
Domain Names, found security bugs and design flaws in Java Virtual Machines, wrote code for
the Cryptix cryptography library, and did security auditing for the Caja Secure JavaScript project.
Daira is a major contributor to the LAFS project and to development of the Zcash
cryptocurrency. In hir spare time, ze is designing a capability-secure programming language
called "Noether".

12

