

Version 1.0.1 Page 1 of 11

Billing Configuration API 1.0

Integration Guide

Version 1.0.1 Page 2 of 11

CONTENTS

CONTENTS .. 2

DOCUMENT CHANGE LOG ... 3

VERSIONING ... 4

BILLING CONFIGURATION WEB SERVICE ... 4

INTRODUCTION.. 5

WEB SERVICES API .. 7

SECURITY ... 7
MESSAGE SIGNING ... 7
CLIENT CERTIFICATES .. 7
WSDL LOCATION ... 8
REQUESTING WEB SERVICES ACCESS .. 8
METHODS AND INTERFACES ... 9

CreateBillingConfiguration .. 9
API USAGE EXAMPLES... 11

Version 1.0.1 Page 3 of 11

Document change log

Date Version Change detail

11
th
 June 2012 1.0.0 Created

04
th
 June 2012 1.0.1 Added Error Codes

Version 1.0.1 Page 4 of 11

Versioning

Billing Configuration Web Service

Version 1.0.0

https://webservices.bango.com/billingconfiguration/?WSDL

Version 1.0.1 Page 5 of 11

Introduction

The Bango Billing Configuration API allows you to programmatically configure a billing request ahead of the
actual transaction request taking place. This API is designed to be used in conjunction with the DirectBilling
API.

The API allows you to configure all of the available options for a transaction to be completed in a “just-in-
time” manner, and allows you to override any particular configured options for a Bango Number to be used
only for that transaction combined with a billingConfigurationId.

This means there is no requirement to configure a collection of Bango Numbers ahead of time to satisfy all
variances for each transaction request.

Configuration Options

Configuration options can be used to set extra configuration options, when creating the billing request. The
possible types are:

 APPLICATION_CATEGORY_ID – the category id mapping to the available category

 APPLICATION_SIZE_KB – the size of the application specified in KB

 BILLING_CONFIGURATION_TIME_OUT – the time in seconds that a billing configuration request
remains valid to be used on a subsequent payment request before becoming invalidated

Not all configuration options are required, depending on the situation in which the API is used, however it is
recommended that where available, all options are set and passed to the method.

Types of Payment Method

For many users, a choice of payment methods is available when collecting payment. The possible types are:

 OPERATOR – on-bill payment

 PSMS – on-bill payment via premium text message

 CARD – credit/debit card

 INTERNET – other Internet payment types (PayPal etc)

In some situations, you might want to prevent certain types of payment method from appearing, or even
force just a single type to be used (for example, to force a payment via credit card).

The CreateBillingConfiguration method used for billing configuration allows for optional list of the above
payment method types to be supplied, filtering the list of payment methods to only those matching the
requested types.

If you want to process a payment by credit card, you should first check the UserInformation.HasCreditCard
method to check the user has a card already on file. If they don’t, your application needs to collect the card
details and pass to ValidateCardForUser before attempting to collect a payment.

External Transaction IDs and Idempotency

All transactional methods now support an optionally supplied external transaction ID which can be generated
by your system and added alongside payment and refund requests within the Bango system. This external

Version 1.0.1 Page 6 of 11

transaction ID can then be used in reports generated by Bango for reconciliation purposes within your own
systems.

If you wish to enforce idempotency on transaction requests, you must ensure an external transaction ID is
supplied on each request.

Idempotency refers to a method whose response is always the same for given input parameters whilst those
parameters remain the same. That is, if you are processing a credit card payment, subsequent calls to the
associated method DirectBilling.DoPaymentWithBillingConfiguration with the same parameters would always
return you the response which was given on the first call, however, subsequent calls can not effect a state
change.

This can be useful to avoid scenarios such as double billing – if you were to call the associated method
DirectBilling.DoPaymentWithBillingConfiguration twice, the first call may result in a successful purchase; the
second call would not request a new payment to be processed, but would return the same result as the initial
call, with exactly the same parameters such as response codes, transaction ID, etc.

Idempotency is not enabled by default. To enforce this on all transactional methods contact
support@bango.com to request this feature..

mailto:support@bango.com

Version 1.0.1 Page 7 of 11

Web Services API

The Web Services API is a secure server-to-server API (SSL only), offering ahead-of-transaction billing
configuration.

Security

The Bango Web Services API is protected to ensure that only authorized clients use it. There are three
primary levels of security:

The Web Services API allows your server to send requests to the Bango server. The Bango server will only
accept requests from authorized IP addresses. Requests directly from an on-handset application are not
allowed – the application must communicate with your server, which must then communicate with the Bango
Web Services API.

 API username/password and third-party account authentication

 Client IP address validation

 Secure Sockets Layer (SSL) data transport

A failure at any one of these security levels denies access to the Bango Web Services API.

Please note: the certificate used by the Bango Web Services API is issued by Thawte. Please make sure
Thawte is configured on your servers as a Trusted Root Certification Authority (CA).

Message Signing

We now optionally support message signing of the parameters within the SOAP body to add a layer of
security for in-transit messages between your server and the Bango WebServices.

TODO: Add detail and worked examples

Client Certificates

There is also an optional level of security utilizing Digital ID certificates. Certificates can be attached to each
request, and Bango will validate your certificate using the Serial Number, Thumbnail and Expiry Date.

If you wish to use this additional security, please note the port number for connectivity should be changed
from the default 443 to 8443. For details on how to supply your certificate details, please see below.

To begin, you will need to purchase a suitable client certificate – Bango recommend a Verisign Digital ID
certificate.

Once you have purchased and configured your certificate, you will need to contact Bango customer services
and supply them the Serial Number, Thumbnail and Expiry Date for the certificate you wish to use.

An example of how to find these details using Microsoft Windows is shown overleaf:

Version 1.0.1 Page 8 of 11

These details will be added to your WebServices credentials and configured to be required on every request.

Once this is done, you should ensure your integration end point uses the new 8443 port when connecting,
and that the certificate is attached to each request. Once enabled, failure to provide a valid certificate will
deny access to the Bango Web Services API.

WSDL Location

The Billing Configuration WSDL can be located at the following URL:

https://webservices.bango.com/billingconfiguration/?wsdl

For those wishing to use Digital ID certificates, the WSDL can be located at:

https://webservices.bango.com:8443/billingconfiguration/?wsdl

Requesting Web Services access
Before you can use the Web Services API, you need to first request access credentials. Login to the
Management tools on bango.com and go to the Setup and Config tab, then select 'Web Service API's' on the
left.

Access to the API is dependent upon package level. If you are unsure whether the API is available to you
please contact Customer Services.

https://webservices.bango.com/billingconfiguration/?wsdl
https://webservices.bango.com:8443/billingconfiguration/?wsdl

Version 1.0.1 Page 9 of 11

Methods and Interfaces

Method: CreateBillingConfiguration

Description: Creates and configures billing ahead of a transaction request for the specified Bango Number.
The Bango Number must be pre-configured via the Bango.com Management Tools with the
appropriate access model and default prices. The values supplied can be used to override the
pre-configured values in the database.

On successful configuration of a number, a billingConfigurationId will be returned which should
be used in a subsequent request to the DirectBilling.DoPaymentWithBillingConfiguration
method call.

Inputs:

username Your username

password Your password

bango Bango number

typeFilter String array of allowed payment method types

priceList Array of price entities, each comprising the following:
amount, int, no nulls
currency, char(3), no nulls

externalTransactionId An optional transaction ID generated by your system which
can be logged against a billing configuration request within the
Bango system.

pageTitle The name of the content being purchased

configurationOptions Array of BillingRequestConfigurationOption entities, each
comprising the following:
 configurationOptionName, string, no nulls
 configurationOptionValue, string, no nulls

Currently supported Configuration Options are:

 APPLICATION_CATEGORY_ID

 APPLICATION_SIZE_KB

 BILLING_CONFIGURATION_TIME_OUT

Unsupported values which are passed on a request will result
in an INVALID_CONFIGURATION_NAME / _VALUE
response.

Outputs: responseCode Result of the payment request (see below)

responseMessage Any additional information to clarify the payment status code

billingConfigurationId Billing Configuration ID returned when billing was successfully
configured – this ID should be used when calling the relevant
methods in the DirectBilling API.

Response
Codes:

OK Success

ACCESS_DENIED Invalid username/password

ACCESS_DENIED Invalid credentials. You are not authorized to
call this method

ACCESS_DENIED Invalid client IP address

ACCESS_DENIED Invalid certificate

ACCESS_DENIED Invalid access to specified Bango number

SERVICE_UNAVAILABLE The service is currently unavailable and your

Version 1.0.1 Page 10 of 11

request could not be processed

INTERNAL_ERROR A problem on the server meant that the
request could not be processed

INVALID_BANGO Invalid Bango number

INVALID_ACCESSMODEL Bango number does not have the correct
access model

INVALID_CONFIGURATION_NAME A supplied configurationOptionName is invalid

INVALID_CONFIGURATION_VALUE A supplied configurationOptionValue is invalid

INVALID_STRING_LENGTH A supplied configurationOptionValue length is
invalid

REQUIRED_CONFIGURATION_MISSING A required configurationOptionName is not
supplied

Notes

Version 1.0.1 Page 11 of 11

API Usage Examples

The following examples are pseudo-code for illustration purposes only. Refer to your appropriate technology
documentation for details of how to use web services in your chosen development environment.

Creating a Billing Configuration request:

String myBango = “12345”
String myPageTitle = “TEST”
String myExtId = “MYEXTID”

CreateBillingConfigurationRequest req
req.username = myUsername
req.password = myPassword

req.bango = myBango
req.pageTitle = myPageTitle
req.externalTransactionId = myExtId

req.priceList = new PriceList[] { new Price(1.00, “GBP”), new Price(1.75, “USD”), new Price(2.50,
“EUR”) }
req.configurationOptions = new configurationOptions[]
{
new BillingConfigurationOption (“APPLICATION_CATEGORY_ID”, “1”),
new BillingConfigurationOption (“APPLICATION_SIZE_KB”, “575”)
}

CreateBillingConfigurationResponse res =
BILLINGCONFIGURATIONAPI.CreateBillingConfiguration(req)

If res.responseCode = “OK” Then

// Successful billing configuration – can now use within Direct Billing API
billingConfigID = res.billingConfigurationId

Else
// Deal with error
responseCode = res.responseCode
responseMessage = res.responseMessage

End If

