Security/Server Side TLS
The goal of this document is to help operational teams with the configuration of TLS on servers. All Mozilla sites and deployment should follow the recommendations below.
The Operations Security (OpSec) team maintains this document as a reference guide to navigate the TLS landscape. It contains information on TLS protocols, known issues and vulnerabilities, configuration examples and testing tools. Changes are reviewed and merged by the OpSec team, and broadcasted to the various Operational teams.
|
Recommended configurations
Three configurations are recommended. Pick the right configuration depending on your audience. If you do not need backward compatibility, and are building a service for modern clients only (post FF27), then use the Modern configuration. Otherwise, prefer the Intermediate configuration. Use the Old backward compatible configuration only if your service will be accessed by very old clients, such as Windows XP IE6, or ancient libraries & bots.
|
Modern compatibility
For services that don't need backward compatibility, the parameters below provide a higher level of security. This configuration is compatible with Firefox 27, Chrome 22, IE 11, Opera 14 and Safari 7.
- Ciphersuite: ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!3DES:!MD5:!PSK
- Versions: TLSv1.1, TLSv1.2
- RSA key size: 2048
- DH Parameter size: 2048
- Elliptic curves: secp256r1, secp384r1, secp521r1 (at a minimum)
- Certificate signature: SHA-256
Intermediate compatibility (default)
For services that don't need compatibility with legacy clients (mostly WinXP), but still need to support a wide range of clients, this configuration is recommended. It is is compatible with Firefox 1, Chrome 1, IE 7, Opera 5 and Safari 1.
- Ciphersuite: ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK
- Versions: TLSv1, TLSv1.1, TLSv1.2
- RSA key size: 2048
- DH Parameter size: 2048
- Elliptic curves: secp256r1, secp384r1, secp521r1 (at a minimum)
- Certificate signature: SHA-256
Old backward compatibility
This is the old ciphersuite that works with all clients back to Windows XP/IE6. It should be used as a last resort only.
- Ciphersuite: ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:DES-CBC3-SHA:HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK
- Versions: SSLv3, TLSv1, TLSv1.1, TLSv1.2
- RSA key size: 2048
- DH Parameter size: 1024
- Elliptic curves: secp256r1, secp384r1, secp521r1
- Certificate signature: SHA-1 (windows XP pre-sp3 is incompatible with sha-256)
If your version of OpenSSL is old, unavailable ciphers will be discarded automatically. Always use the full ciphersuite above and let OpenSSL pick the ones it supports.
The ordering of a ciphersuite is very important because it decides which algorithms are going to be selected in priority. The recommendation above prioritizes algorithms that provide perfect forward secrecy.
The listing below shows the list of algorithms returned by this ciphersuite. If you have to pick them manually for your application, make sure you keep this ordering.
Older versions of OpenSSL may not return the full list of algorithms. AES-GCM and some ECDHE are fairly recent, and not present on most versions of OpenSSL shipped with Ubuntu or RHEL. This listing below was obtained from a freshly built OpenSSL.
$ openssl ciphers -V 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:DES-CBC3-SHA:HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK'|column -t
0xC0,0x2F - ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD
0xC0,0x2B - ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD
0xC0,0x30 - ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
0xC0,0x2C - ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
0x00,0x9E - DHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD
0x00,0xA2 - DHE-DSS-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(128) Mac=AEAD
0x00,0xA3 - DHE-DSS-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(256) Mac=AEAD
0x00,0x9F - DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD
0xC0,0x27 - ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256
0xC0,0x23 - ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256
0xC0,0x13 - ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1
0xC0,0x09 - ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1
0xC0,0x28 - ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
0xC0,0x24 - ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
0xC0,0x14 - ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
0xC0,0x0A - ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1
0x00,0x67 - DHE-RSA-AES128-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(128) Mac=SHA256
0x00,0x33 - DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1
0x00,0x40 - DHE-DSS-AES128-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AES(128) Mac=SHA256
0x00,0x6B - DHE-RSA-AES256-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256
0x00,0x38 - DHE-DSS-AES256-SHA SSLv3 Kx=DH Au=DSS Enc=AES(256) Mac=SHA1
0x00,0x39 - DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
0x00,0x9C - AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD
0x00,0x9D - AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD
0x00,0x32 - DHE-DSS-AES128-SHA SSLv3 Kx=DH Au=DSS Enc=AES(128) Mac=SHA1
0xC0,0x31 - ECDH-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AESGCM(128) Mac=AEAD
0xC0,0x2D - ECDH-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AESGCM(128) Mac=AEAD
0xC0,0x29 - ECDH-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AES(128) Mac=SHA256
0xC0,0x25 - ECDH-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128) Mac=SHA256
0xC0,0x0E - ECDH-RSA-AES128-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(128) Mac=SHA1
0xC0,0x04 - ECDH-ECDSA-AES128-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128) Mac=SHA1
0x00,0x3C - AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256
0x00,0x2F - AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1
0x00,0x6A - DHE-DSS-AES256-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AES(256) Mac=SHA256
0xC0,0x32 - ECDH-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AESGCM(256) Mac=AEAD
0xC0,0x2E - ECDH-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AESGCM(256) Mac=AEAD
0xC0,0x2A - ECDH-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AES(256) Mac=SHA384
0xC0,0x26 - ECDH-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AES(256) Mac=SHA384
0xC0,0x0F - ECDH-RSA-AES256-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(256) Mac=SHA1
0xC0,0x05 - ECDH-ECDSA-AES256-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(256) Mac=SHA1
0x00,0x3D - AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256
0x00,0x35 - AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
0x00,0x0A - DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1
0x00,0x88 - DHE-RSA-CAMELLIA256-SHA SSLv3 Kx=DH Au=RSA Enc=Camellia(256) Mac=SHA1
0x00,0x87 - DHE-DSS-CAMELLIA256-SHA SSLv3 Kx=DH Au=DSS Enc=Camellia(256) Mac=SHA1
0x00,0x84 - CAMELLIA256-SHA SSLv3 Kx=RSA Au=RSA Enc=Camellia(256) Mac=SHA1
0xC0,0x12 - ECDHE-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=RSA Enc=3DES(168) Mac=SHA1
0xC0,0x08 - ECDHE-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=3DES(168) Mac=SHA1
0x00,0x16 - EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
0x00,0x13 - EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1
0xC0,0x0D - ECDH-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=3DES(168) Mac=SHA1
0xC0,0x03 - ECDH-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=3DES(168) Mac=SHA1
0x00,0x1F - KRB5-DES-CBC3-SHA SSLv3 Kx=KRB5 Au=KRB5 Enc=3DES(168) Mac=SHA1
0x00,0x45 - DHE-RSA-CAMELLIA128-SHA SSLv3 Kx=DH Au=RSA Enc=Camellia(128) Mac=SHA1
0x00,0x44 - DHE-DSS-CAMELLIA128-SHA SSLv3 Kx=DH Au=DSS Enc=Camellia(128) Mac=SHA1
0x00,0x41 - CAMELLIA128-SHA SSLv3 Kx=RSA Au=RSA Enc=Camellia(128) Mac=SHA1
The ciphers are described here: http://www.openssl.org/docs/apps/ciphers.html
Prioritization logic
- ECDHE+AESGCM ciphers are selected first. These are TLS 1.2 ciphers and not widely supported at the moment. No known attack currently target these ciphers.
- PFS ciphersuites are preferred, with ECDHE first, then DHE.
- AES 128 is preferred to AES 256. There has been [discussions] on whether AES256 extra security was worth the cost, and the result is far from obvious. At the moment, AES128 is preferred, because it provides good security, is really fast, and seems to be more resistant to timing attacks.
- In the backward compatible ciphersuite, AES is preferred to 3DES. BEAST attacks on AES are mitigated in TLS 1.1 and above, and difficult to achieve in TLS 1.0. In the non-backward compatible ciphersuite, 3DES is not present.
- RC4 is removed entirely. 3DES is used for backward compatibility. See discussion in #RC4_weaknesses
Mandatory discards
- aNULL contains non-authenticated Diffie-Hellman key exchanges, that are subject to Man-In-The-Middle (MITM) attacks
- eNULL contains null-encryption ciphers (cleartext)
- EXPORT are legacy weak ciphers that were marked as exportable by US law
- RC4 contains ciphers that use the deprecated ARCFOUR algorithm
- DES contains ciphers that use the deprecated Data Encryption Standard
- SSLv2 contains all ciphers that were defined in the old version of the SSL standard, now deprecated
- MD5 contains all the ciphers that use the deprecated message digest 5 as the hashing algorithm
Forward Secrecy
The concept of forward secrecy is simple: client and server negotiate a key that never hits the wire, and is destroyed at the end of the session. The RSA private from the server is used to sign a Diffie-Hellman key exchange between the client and the server. The pre-master key obtained from the Diffie-Hellman handshake is then used for encryption. Since the pre-master key is specific to a connection between a client and a server, and used only for a limited amount of time, it is called Ephemeral.
With Forward Secrecy, if an attacker gets a hold of the server's private key, it will not be able to decrypt past communications. The private key is only used to sign the DH handshake, which does not reveal the pre-master key. Diffie-Hellman ensures that the pre-master keys never leave the client and the server, and cannot be intercepted by a MITM.
DHE handshake and dhparam
When an ephemeral Diffie-Hellman cipher is used, the server and the client negotiate a pre-master key using the Diffie-Hellman algorithm. This algorithm requires that the server sends the client a prime number and a generator. Neither are confidential, and are sent in clear text. However, they must be signed, such that a MITM cannot hijack the handshake.
As an example, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 works as follow:
- Server sends Client a [SERVER KEY EXCHANGE] message during the SSL Handshake. The message contains:
- Prime number p
- Generator g
- Server's Diffie-Hellman public value A = g^X mod p, where X is a private integer chosen by the server at random, and never shared with the client.
- signature S of the above (plus two random values) computed using the Server's private RSA key
- Client verifies the signature S
- Client sends server a [CLIENT KEY EXCHANGE] message. The message contains:
- Client's Diffie-Hellman public value B = g^Y mod p, where Y is a private integer chosen at random and never shared.
- The Server and the Client can now calculate the pre-master secret using each other's public values:
- server calculates PMS = B^X mod p
- client calculates PMS = A^Y mod p
- Client sends a [CHANGE CIPHER SPEC] message to the server, and both parties continue the handshake using ENCRYPTED HANDSHAKE MESSAGES
The size of the prime number p constrains the size of the pre-master key PMS, because of the modulo operation. A smaller prime almost means weaker values of A and B, which could leak the secret values X and Y. Thus, the prime p should not be smaller than the size of the RSA private key.
$ openssl dhparam 2048
Generating DH parameters, 2048 bit long safe prime, generator 2
..+..+...............+
-----BEGIN DH PARAMETERS-----
MBYCEQCHU6UNZoHMF6bPtj21Hn/bAgEC.....
......
-----END DH PARAMETERS-----
OCSP Stapling
When connecting to a server, clients should verify the validity of the server certificate using either a Certificate Revocation List (CRL), or an Online Certificate Status Protocol (OCSP) record. The problem with CRL is that the lists have grown huge and takes forever to download.
OCSP is much more lightweight, as only one record is retrieved at a time. But the side effect is that OCSP requests must be made to a 3rd party OCSP responder when connecting to a server, which adds latency and potential failures. In fact, the OCSP responders operated by CAs are often so unreliable that browser will fail silently if no response is received in a timely manner. This reduces security, by allowing an attacker to DoS an OCSP responder to disable the validation.
The solution is to allow the server to send its cached OCSP record during the TLS handshake, therefore bypassing the OCSP responder. This mechanism saves a roundtrip between the client and the OCSP responder, and is called OCSP Stapling.
The server will send a cached OCSP response only if the client requests it, by announcing support for the status_request TLS extension in its CLIENT HELLO.
Most servers will cache OCSP response for up to 48 hours. At regular intervals, the server will connect to the OCSP responder of the CA to retrieve a fresh OCSP record. The location of the OCSP responder is taken from the Authority Information Access field of the signed certificate. For example, with StartSSL:
Authority Information Access: OCSP - URI:http://ocsp.startssl.com/sub/class1/server/ca
Support for OCSP Stapling can be tested using the -status option of the OpenSSL client.
$ openssl s_client -connect monitor.mozillalabs.com:443 -status ... ====================================== OCSP Response Data: OCSP Response Status: successful (0x0) Response Type: Basic OCSP Response Version: 1 (0x0) ...
Recommended Server Configurations
Nginx
Nginx provides the best TLS support at the moment. It is the only daemon that provides OCSP Stapling, custom DH parameters, and the full flavor of TLS versions (from OpenSSL).
The detail of each configuration parameter, and how to build a recent Nginx with OpenSSL, is at the end of this document.
server { listen 443; ssl on; # certs sent to the client in SERVER HELLO are concatenated in ssl_certificate ssl_certificate /path/to/signed_cert_plus_intermediates; ssl_certificate_key /path/to/private_key; ssl_session_timeout 5m; ssl_session_cache shared:SSL:50m; # Diffie-Hellman parameter for DHE ciphersuites, recommended 2048 bits ssl_dhparam /path/to/dhparam.pem; # Intermediate configuration. tweak to your needs. ssl_protocols TLSv1 TLSv1.1 TLSv1.2; ssl_ciphers 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK'; ssl_prefer_server_ciphers on; # Enable this if your want HSTS (recommended) # add_header Strict-Transport-Security max-age=15768000; # OCSP Stapling --- # fetch OCSP records from URL in ssl_certificate and cache them ssl_stapling on; ssl_stapling_verify on; ## verify chain of trust of OCSP response using Root CA and Intermediate certs ssl_trusted_certificate /path/to/root_CA_cert_plus_intermediates; resolver <IP DNS resolver>; .... }
Apache
Apache supports OCSP Stapling, but only in httpd 2.3.3 and later.
In Apache 2.4.6, the DH parameter is always set to 1024 bits and is not user configurable. Future versions of Apache will automatically select a better value for the DH parameter. The configuration below is recommended.
<VirtualHost *:443> ... SSLEngine on SSLCertificateFile /path/to/signed_certificate SSLCertificateChainFile /path/to/intermediate_certificate SSLCertificateKeyFile /path/to/private/key SSLCACertificateFile /path/to/all_ca_certs # Intermediate configuration, tweak to your needs SSLProtocol all -SSLv2 -SSLv3 SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK SSLHonorCipherOrder on SSLCompression off # OCSP Stapling, only in httpd 2.3.3 and later SSLUseStapling on SSLStaplingResponderTimeout 5 SSLStaplingReturnResponderErrors off SSLStaplingCache shmcb:/var/run/ocsp(128000) # Enable this if your want HSTS (recommended) # Header add Strict-Transport-Security "max-age=15768000" ... </VirtualHost>
Haproxy
SSL support in Haproxy is stable in 1.5. Haproxy supports OCSP Stapling and custom DH parameters size. It can be used as a TLS termination in AWS using ELBs and the PROXY protocol. See Guidelines for HAProxy termination in AWS
global # set default parameters to the Intermediate configuration tune.ssl.default-dh-param 2048 ssl-default-bind-ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK frontend ft_test mode http bind 0.0.0.0:443 ssl no-sslv3 crt /path/to/<cert+privkey+intermediate+dhparam> # Enable this if your want HSTS (recommended) # rspadd Strict-Transport-Security:\ max-age=15768000
OCSP Stapling support
While HAProxy can serve OCSP stapled responses, it cannot fetch and update OCSP records from the CA automatically. The OCSP response must be downloaded by another process and placed next to the certificate, with a '.ocsp' extension.
/etc/haproxy/certs/ ├── ca.pem ├── server_cert.pem ├── server_bundle.pem └── server_bundle.pem.ocsp
The file 'server_bundle.pem.ocsp' must be retrieved and updated at regular intervals. A cronjob can be used for this:
$ openssl ocsp -noverify -issuer /etc/haproxy/certs/ca.pem \ -cert /etc/haproxy/certs/server_cert.pem \ -url http://ocsp.startssl.com/sub/class1/server/ca \ -no_nonce -header Host ocsp.startssl.com \ -respout /etc/haproxy/certs/server_bundle.pem.ocsp
The URL above is taken from the server certificate:
$ openssl x509 -in server_cert.pem -text | grep OCSP OCSP - URI:http://ocsp.startssl.com/sub/class1/server/ca
Stud
Stud is a lightweight SSL termination proxy. It's basically a wrapper for OpenSSL. Stud is not being heavily developed, and features such as OCSP stapling are missing. But it is very lightweight and efficient, and with a recent openssl, supports all the TLS 1.2 ciphers.
# SSL x509 certificate file. REQUIRED. # List multiple certs to use SNI. Certs are used in the order they # are listed; the last cert listed will be used if none of the others match # # type: string pem-file = "<concatenate cert + privkey + dhparam>" # SSL protocol. # tls = on ssl = on # List of allowed SSL ciphers. # # Run openssl ciphers for list of available ciphers. # type: string ciphers = "<recommended ciphersuite from top of this page>" # Enforce server cipher list order # # type: boolean prefer-server-ciphers = on
Amazon Web Services Elastic Load Balancer (AWS ELB)
The ELB service supports TLS 1.2 and ciphers ordering, but lacks support for custom DH parameters and OCSP Stapling.
The default configuration of ELBs has old settings, that can be customized in the Web Console or via the API. We recommend that you use the Security/Server_Side_TLS#elb_ciphers.py to enforce the right TLS configuration on an elastic load balancer.
Below is a side-by-side comparison of the 'intermediate' recommended configuration versus the default ELB configuration. The top ciphers are the same, but SSLv3 and various deprecated ciphers are removed from the intermediate configuration.
= INTERMEDIATE configuration = | = default ELB configuration =
|
prio ciphersuite protocols pfs_keysize | prio ciphersuite protocols pfs_keysize
1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 ECDH,P-256,256bits | 1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 ECDH,P-256,256bits
2 ECDHE-RSA-AES128-SHA256 TLSv1.2 ECDH,P-256,256bits | 2 ECDHE-RSA-AES128-SHA256 TLSv1.2 ECDH,P-256,256bits
3 ECDHE-RSA-AES128-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits | 3 ECDHE-RSA-AES128-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits
4 ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 ECDH,P-256,256bits | 4 ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 ECDH,P-256,256bits
5 ECDHE-RSA-AES256-SHA384 TLSv1.2 ECDH,P-256,256bits | 5 ECDHE-RSA-AES256-SHA384 TLSv1.2 ECDH,P-256,256bits
6 ECDHE-RSA-AES256-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits | 6 ECDHE-RSA-AES256-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits
7 AES128-GCM-SHA256 TLSv1.2 | 7 AES128-GCM-SHA256 TLSv1.2
8 AES128-SHA256 TLSv1.2 | 8 AES128-SHA256 TLSv1.2
9 AES128-SHA TLSv1,TLSv1.1,TLSv1.2 | 9 AES128-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2
10 AES256-GCM-SHA384 TLSv1.2 | 10 AES256-GCM-SHA384 TLSv1.2
11 AES256-SHA256 TLSv1.2 | 11 AES256-SHA256 TLSv1.2
12 AES256-SHA TLSv1,TLSv1.1,TLSv1.2 | 12 AES256-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2
13 DHE-RSA-AES128-SHA TLSv1,TLSv1.1,TLSv1.2 DH,1024bits | 13 DHE-RSA-AES128-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2 DH,1024bits
14 CAMELLIA128-SHA TLSv1,TLSv1.1,TLSv1.2 | 14 ECDHE-RSA-RC4-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits
15 DHE-RSA-AES256-GCM-SHA384 TLSv1.2 DH,1024bits | 15 RC4-SHA SSLv3,TLSv1,TLSv1.1,TLSv1.2
16 DHE-RSA-AES256-SHA256 TLSv1.2 DH,1024bits |
17 DHE-RSA-AES256-SHA TLSv1,TLSv1.1,TLSv1.2 DH,1024bits | Certificate: trusted, 2048 bit, sha256WithRSAEncryption signature
18 CAMELLIA256-SHA TLSv1,TLSv1.1,TLSv1.2 | TLS ticket lifetime hint: 300
19 DHE-RSA-AES128-GCM-SHA256 TLSv1.2 DH,1024bits | OCSP stapling: not supported
20 DHE-RSA-AES128-SHA256 TLSv1.2 DH,1024bits |
|
Certificate: trusted, 2048 bit, sha256WithRSAEncryption signature |
TLS ticket lifetime hint: 300 |
OCSP stapling: not supported |
If you want better control over TLS than ELB provide, another option in AWS is to terminate SSL on HAproxy, using the PROXY protocol between ELB and HAproxy. https://jve.linuxwall.info/ressources/taf/haproxy-aws/
Zeus Load Balancer(Riverbed Stingray)
ZLB supports TLS1.1 and OCSP Stapling. It lacks support for TLS 1.2, Elliptic Curves and AES-GCM. As of Riverbed Steelhead 9.6, TLS parameters are configurable per site. Sites that don't need backward compatibility are encourage to remove support for SSLv3, TLSv1.0, and 3DES. OCSP Stapling must be enabled on all sites.
The recommended prioritization is:
- SSL_DHE_RSA_WITH_AES_128_CBC_SHA
- SSL_DHE_RSA_WITH_AES_256_CBC_SHA
- SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- SSL_RSA_WITH_AES_128_CBC_SHA
- SSL_RSA_WITH_AES_256_CBC_SHA
- SSL_RSA_WITH_3DES_EDE_CBC_SHA
The following strings can be used directly in the ZLB configuration, under global settings > ssl3_ciphers. with 3DES
SSL_DHE_RSA_WITH_AES_128_CBC_SHA,SSL_DHE_RSA_WITH_AES_256_CBC_SHA,SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,SSL_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_AES_256_CBC_SHA,SSL_RSA_WITH_3DES_EDE_CBC_SHA
without 3DES
SSL_DHE_RSA_WITH_AES_128_CBC_SHA,SSL_DHE_RSA_WITH_AES_256_CBC_SHA,SSL_RSA_WITH_AES_128_CBC_SHA,SSL_RSA_WITH_AES_256_CBC_SHA
While the recommended DH prime size is 2048, problems with client libraries, such as Java 6, make this impossible to deploy for now. Therefore, a DH prime of 1024 bits should be used until all clients are compatible with larger primes.
Citrix Netscaler
There is an issue with Netscaler's TLS1.2 and DHE ciphers. When DHE is used, the TLS handshake fails with a fatal 'Decode error'. TLS1.2 works fine with AES and RC4 ciphers.
Netscaler documentation is at http://support.citrix.com/proddocs/topic/netscaler-traffic-management-10-map/ns-ssl-supported-ciphers-list-ref.html
The configuration sample below shows how a default ciphersuite object can be created and attached to a vserver.
First, create a default ciphersuite that can be used in all vservers.
> add ssl cipher MozillaDefault > bind ssl cipher MozillaSecure -cipherName TLS1-DHE-DSS-AES-128-CBC-SHA > bind ssl cipher MozillaSecure -cipherName TLS1-DHE-RSA-AES-128-CBC-SHA > bind ssl cipher MozillaSecure -cipherName TLS1-DHE-DSS-AES-256-CBC-SHA > bind ssl cipher MozillaSecure -cipherName TLS1-DHE-RSA-AES-256-CBC-SHA > bind ssl cipher MozillaSecure -cipherName TLS1-AES-128-CBC-SHA > bind ssl cipher MozillaSecure -cipherName TLS1-AES-256-CBC-SHA > bind ssl cipher MozillaSecure -cipherName SSL3-DES-CBC3-SHA
Second, create a DH parameter. If backward compatibility with Java 6 isn't needed, use 2048 instead of 1024.
> create ssl dhparam /nsconfig/ssl/dh1024.pem 1024 -gen 5
Third, configure the vserver to use the default ciphersuite and DH parameter.
> add ssl certKey <domain> -cert <cert> -key <key> > add ssl certKey <intermediateCertName> -cert <intermediateCertName> > link ssl certKey <domain> <intermediateCertName> > set ssl vserver <domain>:https -eRSA ENABLED > bind ssl vserver <domain>:https -cipherName MozillaDefault > set ssl vserver <domain>:https -dh ENABLED -dhFile /nsconfig/ssl/dh1024.pem -dhCount 1000
The resulting configuration can be viewed with 'show ssl'
> show ssl vserver marketplace.firefox.com:https Advanced SSL configuration for VServer marketplace.firefox.com:https: DH: ENABLED DHParam File: /nsconfig/ssl/dh1024.pem Refresh Count: 1000 Ephemeral RSA: ENABLED Refresh Count: 0 Session Reuse: ENABLED Timeout: 120 seconds Cipher Redirect: DISABLED SSLv2 Redirect: DISABLED ClearText Port: 0 Client Auth: DISABLED SSL Redirect: DISABLED Non FIPS Ciphers: DISABLED SNI: DISABLED SSLv2: DISABLED SSLv3: ENABLED TLSv1: ENABLED Push Encryption Trigger: Always Send Close-Notify: YES 1) CertKey Name: marketplace.mozilla.org.san Server Certificate 1) Cipher Name: MozillaSecure Description: User Created Cipher Group
CipherScan
See https://github.com/jvehent/cipherscan
Cipherscan is a small Bash script that connects to a target and list the preferred Ciphers. It's an easy way to test a web server for available ciphers, PFS key size, elliptic curves, support for OCSP Stapling, TLS ticket lifetime and certificate trust.
$ ./cipherscan jve.linuxwall.info
..........................
prio ciphersuite protocols pfs_keysize
1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 ECDH,P-256,256bits
2 ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 ECDH,P-256,256bits
3 DHE-RSA-AES256-GCM-SHA384 TLSv1.2 DH,4096bits
4 DHE-RSA-AES128-GCM-SHA256 TLSv1.2 DH,4096bits
5 ECDHE-RSA-AES128-SHA256 TLSv1.2 ECDH,P-256,256bits
6 ECDHE-RSA-AES128-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits
7 ECDHE-RSA-AES256-SHA384 TLSv1.2 ECDH,P-256,256bits
8 ECDHE-RSA-AES256-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits
9 DHE-RSA-AES128-SHA256 TLSv1.2 DH,4096bits
10 DHE-RSA-AES128-SHA TLSv1,TLSv1.1,TLSv1.2 DH,4096bits
11 DHE-RSA-AES256-SHA256 TLSv1.2 DH,4096bits
12 AES128-GCM-SHA256 TLSv1.2
13 AES256-GCM-SHA384 TLSv1.2
14 ECDHE-RSA-DES-CBC3-SHA TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256,256bits
15 EDH-RSA-DES-CBC3-SHA TLSv1,TLSv1.1,TLSv1.2 DH,4096bits
16 DES-CBC3-SHA TLSv1,TLSv1.1,TLSv1.2
17 DHE-RSA-AES256-SHA TLSv1,TLSv1.1,TLSv1.2 DH,4096bits
18 DHE-RSA-CAMELLIA256-SHA TLSv1,TLSv1.1,TLSv1.2 DH,4096bits
19 AES256-SHA256 TLSv1.2
20 AES256-SHA TLSv1,TLSv1.1,TLSv1.2
21 CAMELLIA256-SHA TLSv1,TLSv1.1,TLSv1.2
22 DHE-RSA-CAMELLIA128-SHA TLSv1,TLSv1.1,TLSv1.2 DH,4096bits
23 AES128-SHA256 TLSv1.2
24 AES128-SHA TLSv1,TLSv1.1,TLSv1.2
25 CAMELLIA128-SHA TLSv1,TLSv1.1,TLSv1.2
Certificate: trusted, 2048 bit, sha1WithRSAEncryption signature
TLS ticket lifetime hint: 300
OCSP stapling: supported
SSL Labs (Qualys)
Available here: https://www.ssllabs.com/ssltest/
Qualys SSL Labs provides a comprehensive SSL testing suite.
GlobalSign has a modified interface of SSL Labs that is interesting as well: https://sslcheck.globalsign.com/
elb_ciphers.py
This python script uses boto to create a TLS policy and apply it to a given load balancer. Make sure you have an AWS access key configured in ~/.boto to use this script, then invoke it as follow:
$ python cipher.py us-east-1 stooge-lb-prod-1 modern
New Policy 'Mozilla-OpSec-TLS-Modern-v-3-2' created and applied to load balancer stooge-lb-prod-1 in us-east-1
If no mode is specified, the intermediate mode will be used. The modes are 'old', 'intermediate' and 'modern', and map to the recommended configurations.
#!/usr/bin/env python
# Apply recommendation from https://wiki.mozilla.org/Security/Server_Side_TLS
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Contributors:
# Gene Wood [:gene]
# Julien Vehent [:ulfr]
# JP Schneider [:jp]
import boto.ec2.elb
import sys
if len(sys.argv) < 3:
print "usage : %s REGION ELB-NAME <MODE>" % sys.argv[0]
print ""
print "Example : %s us-west-2 persona-org-0810" % sys.argv[0]
print "MODE can be 'old', 'intermediate' (default) or 'modern'"
print "see https://wiki.mozilla.org/Security/Server_Side_TLS"
sys.exit(1)
region = sys.argv[1]
load_balancer_name = sys.argv[2]
try:
conf_mode = sys.argv[3]
except IndexError:
conf_mode = 'intermediate'
conn_elb = boto.ec2.elb.connect_to_region(region)
#import logging
#logging.basicConfig(level=logging.DEBUG)
policy = {'old':{},
'intermediate':{},
'modern':{}}
policy['old']['name'] = 'Mozilla-OpSec-TLS-Old-v-3-2'
policy['old']['ciphersuite'] = {
"ECDHE-ECDSA-AES128-GCM-SHA256": True,
"ECDHE-RSA-AES128-GCM-SHA256": True,
"ECDHE-ECDSA-AES128-SHA256": True,
"ECDHE-RSA-AES128-SHA256": True,
"ECDHE-ECDSA-AES128-SHA": True,
"ECDHE-RSA-AES128-SHA": True,
"ECDHE-ECDSA-AES256-GCM-SHA384": True,
"ECDHE-RSA-AES256-GCM-SHA384": True,
"ECDHE-ECDSA-AES256-SHA384": True,
"ECDHE-RSA-AES256-SHA384": True,
"ECDHE-RSA-AES256-SHA": True,
"ECDHE-ECDSA-AES256-SHA": True,
"ADH-AES128-GCM-SHA256": False,
"ADH-AES256-GCM-SHA384": False,
"ADH-AES128-SHA": False,
"ADH-AES128-SHA256": False,
"ADH-AES256-SHA": False,
"ADH-AES256-SHA256": False,
"ADH-CAMELLIA128-SHA": False,
"ADH-CAMELLIA256-SHA": False,
"ADH-DES-CBC3-SHA": False,
"ADH-DES-CBC-SHA": False,
"ADH-RC4-MD5": False,
"ADH-SEED-SHA": False,
"AES128-GCM-SHA256": True,
"AES256-GCM-SHA384": True,
"AES128-SHA": True,
"AES128-SHA256": True,
"AES256-SHA": True,
"AES256-SHA256": True,
"CAMELLIA128-SHA": True,
"CAMELLIA256-SHA": True,
"DES-CBC3-MD5": False,
"DES-CBC3-SHA": True,
"DES-CBC-MD5": False,
"DES-CBC-SHA": False,
"DHE-DSS-AES128-GCM-SHA256": True,
"DHE-DSS-AES256-GCM-SHA384": True,
"DHE-DSS-AES128-SHA": True,
"DHE-DSS-AES128-SHA256": True,
"DHE-DSS-AES256-SHA": True,
"DHE-DSS-AES256-SHA256": True,
"DHE-DSS-CAMELLIA128-SHA": False,
"DHE-DSS-CAMELLIA256-SHA": False,
"DHE-DSS-SEED-SHA": False,
"DHE-RSA-AES128-GCM-SHA256": True,
"DHE-RSA-AES256-GCM-SHA384": True,
"DHE-RSA-AES128-SHA": True,
"DHE-RSA-AES128-SHA256": True,
"DHE-RSA-AES256-SHA": True,
"DHE-RSA-AES256-SHA256": True,
"DHE-RSA-CAMELLIA128-SHA": False,
"DHE-RSA-CAMELLIA256-SHA": False,
"DHE-RSA-SEED-SHA": False,
"EDH-DSS-DES-CBC3-SHA": False,
"EDH-DSS-DES-CBC-SHA": False,
"EDH-RSA-DES-CBC3-SHA": False,
"EDH-RSA-DES-CBC-SHA": False,
"EXP-ADH-DES-CBC-SHA": False,
"EXP-ADH-RC4-MD5": False,
"EXP-DES-CBC-SHA": False,
"EXP-EDH-DSS-DES-CBC-SHA": False,
"EXP-EDH-RSA-DES-CBC-SHA": False,
"EXP-KRB5-DES-CBC-MD5": False,
"EXP-KRB5-DES-CBC-SHA": False,
"EXP-KRB5-RC2-CBC-MD5": False,
"EXP-KRB5-RC2-CBC-SHA": False,
"EXP-KRB5-RC4-MD5": False,
"EXP-KRB5-RC4-SHA": False,
"EXP-RC2-CBC-MD5": False,
"EXP-RC4-MD5": False,
"IDEA-CBC-SHA": False,
"KRB5-DES-CBC3-MD5": False,
"KRB5-DES-CBC3-SHA": False,
"KRB5-DES-CBC-MD5": False,
"KRB5-DES-CBC-SHA": False,
"KRB5-RC4-MD5": False,
"KRB5-RC4-SHA": False,
"PSK-3DES-EDE-CBC-SHA": False,
"PSK-AES128-CBC-SHA": False,
"PSK-AES256-CBC-SHA": False,
"PSK-RC4-SHA": False,
"RC2-CBC-MD5": False,
"RC4-MD5": False,
"RC4-SHA": False,
"SEED-SHA": False,
"Protocol-SSLv2": False,
"Protocol-SSLv3": True,
"Protocol-TLSv1": True,
"Protocol-TLSv1.1": True,
"Protocol-TLSv1.2": True,
"Server-Defined-Cipher-Order": True
}
# reuse the Old policy minus SSLv3 and 3DES
policy['intermediate']['name'] = 'Mozilla-OpSec-TLS-Intermediate-v-3-2'
policy['intermediate']['ciphersuite'] = policy['old']['ciphersuite'].copy()
policy['intermediate']['ciphersuite'].update(
{"Protocol-SSLv3": False,
"DES-CBC3-SHA": False})
# reuse the intermediate policy minus TLSv1 and non PFS ciphers
policy['modern']['name'] = 'Mozilla-OpSec-TLS-Modern-v-3-2'
policy['modern']['ciphersuite'] = policy['intermediate']['ciphersuite'].copy()
policy['modern']['ciphersuite'].update(
{"Protocol-TLSv1": False,
"AES128-GCM-SHA256": False,
"AES256-GCM-SHA384": False,
"DHE-DSS-AES128-SHA": False,
"AES128-SHA256": False,
"AES128-SHA": False,
"DHE-DSS-AES256-SHA256": False,
"AES256-SHA256": False,
"AES256-SHA": False,
"CAMELLIA128-SHA": False,
"CAMELLIA256-SHA": False})
if not conf_mode in policy.keys():
print "Invalid policy name, must be one of %s" % policy.keys()
sys.exit(1)
# Create the Ciphersuite Policy
params = {'LoadBalancerName': load_balancer_name,
'PolicyName': policy[conf_mode]['name'],
'PolicyTypeName': 'SSLNegotiationPolicyType'}
conn_elb.build_complex_list_params(
params,
[(x, policy[conf_mode]['ciphersuite'][x]) for x in policy[conf_mode]['ciphersuite'].keys()],
'PolicyAttributes.member',
('AttributeName', 'AttributeValue'))
policy_result = conn_elb.get_list('CreateLoadBalancerPolicy', params, None, verb='POST')
# Apply the Ciphersuite Policy to your ELB
params = {'LoadBalancerName': load_balancer_name,
'LoadBalancerPort': 443,
'PolicyNames.member.1': policy[conf_mode]['name']}
result = conn_elb.get_list('SetLoadBalancerPoliciesOfListener', params, None)
print "New Policy '%s' created and applied to load balancer %s in %s" % (
policy[conf_mode]['name'],
load_balancer_name,
region)
Appendices
Supported ciphers on various systems
On a variety of ~900 systems (RHEL5 & 6, CentOS 5 & 6 and Ubuntu), the following versions of OpenSSL were found:
37 | OpenSSL 0.9.8e-fips-rhel5 01 Jul 2008 |
35 | OpenSSL 0.9.8k 25 Mar 2009 |
777 | OpenSSL 1.0.0-fips 29 Mar 2010 |
18 | OpenSSL 1.0.1 14 Mar 2012 |
The recommended ciphersuite was tested on each system. The list below shows the ciphersuites supported by all tested systems. However old your setup may be, it is safe to assume that the following ciphers are going to be available:
- RC4-SHA
- DHE-RSA-AES128-SHA
- DHE-RSA-AES256-SHA
- AES128-SHA
- AES256-SHA
- DHE-DSS-AES128-SHA
- DHE-DSS-AES256-SHA
Attacks on TLS
BEAST CVE-2011-3389
Beast is a vulnerability in the Initialization Vector (IV) of the CBC mode of AES, Camellia and a few other ciphers that use CBC mode. The attack allows a MITM attacker to recover plaintext values by encrypting the same message multiple times.
BEAST is mitigated in TLS1.1 and above.
more: https://blog.torproject.org/blog/tor-and-beast-ssl-attack
LUCKY13
Lucky13 is another attack on CBC mode that listen for padding checks to decrypt ciphertext.
more: https://www.imperialviolet.org/2013/02/04/luckythirteen.html
RC4 weaknesses
It has been proven that RC4 biases in the first 256 bytes of a cipherstream can be used to recover encrypted text. If the same data is encrypted a very large number of times, then an attacker can apply statistical analysis to the results and recover the encrypted text. While hard to perform, this attack shows that it is time to remove RC4 from the list of trusted ciphers.
In a public discussion ([bug 927045]), it has been recommended to replace RC4 with 3DES. This would impact Internet Explorer 7 and 8 users that, depending on the OS, do not support AES, and will negotiate only RC4 or 3DES ciphers. Internet Explorer uses the cryptographic library “schannel”, which is OS dependent. schannel supports AES in Windows Vista, but not in Windows XP.
While 3DES provides more resistant cryptography, it is also 30 times slower and more cpu intensive than RC4. For large web infrastructure, the CPU cost of replacing 3DES with RC4 is non-zero. For this reason, we recommend that administrators evaluate their traffic patterns, and make the decision of replacing RC4 with 3DES on a per-case basis. At Mozilla, we evaluated that the impact on CPU usage is minor, and thus decided to replace RC4 with 3DES where backward compatibility is required.
CRIME CVE-2012-4929
The root cause of the problem is information leakage that occurs when data is compressed prior to encryption. If someone can repeatedly inject and mix arbitrary content with some sensitive and relatively predictable data, and observe the resulting encrypted stream, then he will be able to extract the unknown data from it.
BREACH
This is a more complex attack than CRIME, which does not require TLS-level compression (it still needs HTTP-level compression).
In order to be successful, it requires to:
- Be served from a server that uses HTTP-level compression
- Reflect user-input in HTTP response bodies
- Reflect a secret (such as a CSRF token) in HTTP response bodies
more: http://breachattack.com/
SPDY
(see also http://en.wikipedia.org/wiki/SPDY and http://www.chromium.org/spdy/spdy-protocol)
SPDY is a protocol that incorporate TLS, which attempts to reduce latency when loading pages. It is currently not an HTTP standard (albeit it is being drafted for HTTP 2.0), but is widely supported.
SPDY version 3 is vulnerable to the CRIME attack (see also http://zoompf.com/2012/09/explaining-the-crime-weakness-in-spdy-and-ssl) - this is due to the use of compression. Clients currently implement a non-standard hack in with gzip in order to circumvent the vulnerability. SPDY version 4 is planned to include a proper fix.
TLS tickets (RFC 5077)
Once a TLS handshake has been negociated between the server and the client, both may exchange a session ticket, which contains an AES-CBC 128bit key which can decrypt the session. This key is generally static and only regenerated when the web server is restarted (with recent versions of Apache, it's stored in a file and also kept upon restarts).
The current work-around is to disable RFC 5077 support.
more: https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-Slides.pdf
Cipher names correspondence table
IANA, OpenSSL and GnuTLS use different naming for the same ciphers. The table below matches some of these ciphers:
hex value | IANA | OpenSSL | GnuTLS | NSS |
---|---|---|---|---|
0x00,0x00 | TLS_NULL_WITH_NULL_NULL | SSL_NULL_WITH_NULL_NULL | ||
0x00,0x01 | TLS_RSA_WITH_NULL_MD5 | NULL-MD5 | TLS_RSA_NULL_MD5 | SSL_RSA_WITH_NULL_MD5 |
0x00,0x02 | TLS_RSA_WITH_NULL_SHA | NULL-SHA | TLS_RSA_NULL_SHA1 | SSL_RSA_WITH_NULL_SHA |
0x00,0x03 | TLS_RSA_EXPORT_WITH_RC4_40_MD5 | EXP-RC4-MD5 | TLS_RSA_EXPORT_ARCFOUR_40_MD5 | SSL_RSA_EXPORT_WITH_RC4_40_MD5 |
0x00,0x04 | TLS_RSA_WITH_RC4_128_MD5 | RC4-MD5 | TLS_RSA_ARCFOUR_MD5 | SSL_RSA_WITH_RC4_128_MD5 |
0x00,0x05 | TLS_RSA_WITH_RC4_128_SHA | RC4-SHA | TLS_RSA_ARCFOUR_SHA1 | SSL_RSA_WITH_RC4_128_SHA |
0x00,0x06 | TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 | EXP-RC2-CBC-MD5 | SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 | |
0x00,0x07 | TLS_RSA_WITH_IDEA_CBC_SHA | IDEA-CBC-SHA | SSL_RSA_WITH_IDEA_CBC_SHA | |
0x00,0x08 | TLS_RSA_EXPORT_WITH_DES40_CBC_SHA | EXP-DES-CBC-SHA | SSL_RSA_EXPORT_WITH_DES40_CBC_SHA | |
0x00,0x09 | TLS_RSA_WITH_DES_CBC_SHA | DES-CBC-SHA | SSL_RSA_WITH_DES_CBC_SHA | |
0x00,0x0A | TLS_RSA_WITH_3DES_EDE_CBC_SHA | DES-CBC3-SHA | TLS_RSA_3DES_EDE_CBC_SHA1 | |
0x00,0x0B | TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA | |||
0x00,0x0C | TLS_DH_DSS_WITH_DES_CBC_SHA | |||
0x00,0x0D | TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA | |||
0x00,0x0E | TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA | |||
0x00,0x0F | TLS_DH_RSA_WITH_DES_CBC_SHA | |||
0x00,0x10 | TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA | SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA | ||
0x00,0x11 | TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA | EXP-EDH-DSS-DES-CBC-SHA | SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA | |
0x00,0x12 | TLS_DHE_DSS_WITH_DES_CBC_SHA | EDH-DSS-DES-CBC-SHA | SSL_DHE_DSS_WITH_DES_CBC_SHA | |
0x00,0x13 | TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA | EDH-DSS-DES-CBC3-SHA | TLS_DHE_DSS_3DES_EDE_CBC_SHA1 | SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA |
0x00,0x14 | TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA | EXP-EDH-RSA-DES-CBC-SHA | SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA | |
0x00,0x15 | TLS_DHE_RSA_WITH_DES_CBC_SHA | EDH-RSA-DES-CBC-SHA | SSL_DHE_RSA_WITH_DES_CBC_SHA | |
0x00,0x16 | TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA | EDH-RSA-DES-CBC3-SHA | TLS_DHE_RSA_3DES_EDE_CBC_SHA1 | SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA |
0x00,0x17 | TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 | EXP-ADH-RC4-MD5 | SSL_DH_ANON_EXPORT_WITH_RC4_40_MD5 | |
0x00,0x18 | TLS_DH_anon_WITH_RC4_128_MD5 | ADH-RC4-MD5 | TLS_DH_ANON_ARCFOUR_MD5 | SSL_DH_ANON_WITH_RC4_128_MD5 |
0x00,0x19 | TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA | EXP-ADH-DES-CBC-SHA | SSL_DH_ANON_EXPORT_WITH_DES40_CBC_SHA | |
0x00,0x1A | TLS_DH_anon_WITH_DES_CBC_SHA | ADH-DES-CBC-SHA | ||
0x00,0x1B | TLS_DH_anon_WITH_3DES_EDE_CBC_SHA | ADH-DES-CBC3-SHA | TLS_DH_ANON_3DES_EDE_CBC_SHA1 | |
0x00,0x1E | TLS_KRB5_WITH_DES_CBC_SHA | KRB5-DES-CBC-SHA | ||
0x00,0x1F | TLS_KRB5_WITH_3DES_EDE_CBC_SHA | KRB5-DES-CBC3-SHA | ||
0x00,0x20 | TLS_KRB5_WITH_RC4_128_SHA | KRB5-RC4-SHA | ||
0x00,0x21 | TLS_KRB5_WITH_IDEA_CBC_SHA | KRB5-IDEA-CBC-SHA | ||
0x00,0x22 | TLS_KRB5_WITH_DES_CBC_MD5 | KRB5-DES-CBC-MD5 | ||
0x00,0x23 | TLS_KRB5_WITH_3DES_EDE_CBC_MD5 | KRB5-DES-CBC3-MD5 | ||
0x00,0x24 | TLS_KRB5_WITH_RC4_128_MD5 | KRB5-RC4-MD5 | ||
0x00,0x25 | TLS_KRB5_WITH_IDEA_CBC_MD5 | KRB5-IDEA-CBC-MD5 | ||
0x00,0x26 | TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA | EXP-KRB5-DES-CBC-SHA | ||
0x00,0x27 | TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA | EXP-KRB5-RC2-CBC-SHA | ||
0x00,0x28 | TLS_KRB5_EXPORT_WITH_RC4_40_SHA | EXP-KRB5-RC4-SHA | ||
0x00,0x29 | TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 | EXP-KRB5-DES-CBC-MD5 | ||
0x00,0x2A | TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 | EXP-KRB5-RC2-CBC-MD5 | ||
0x00,0x2B | TLS_KRB5_EXPORT_WITH_RC4_40_MD5 | EXP-KRB5-RC4-MD5 | ||
0x00,0x2C | TLS_PSK_WITH_NULL_SHA | |||
0x00,0x2D | TLS_DHE_PSK_WITH_NULL_SHA | |||
0x00,0x2E | TLS_RSA_PSK_WITH_NULL_SHA | |||
0x00,0x2F | TLS_RSA_WITH_AES_128_CBC_SHA | AES128-SHA | TLS_RSA_AES_128_CBC_SHA1 | TLS_RSA_WITH_AES_128_CBC_SHA |
0x00,0x30 | TLS_DH_DSS_WITH_AES_128_CBC_SHA | TLS_DH_DSS_WITH_AES_128_CBC_SHA | ||
0x00,0x31 | TLS_DH_RSA_WITH_AES_128_CBC_SHA | TLS_DH_RSA_WITH_AES_128_CBC_SHA | ||
0x00,0x32 | TLS_DHE_DSS_WITH_AES_128_CBC_SHA | DHE-DSS-AES128-SHA | TLS_DHE_DSS_AES_128_CBC_SHA1 | TLS_DHE_DSS_WITH_AES_128_CBC_SHA |
0x00,0x33 | TLS_DHE_RSA_WITH_AES_128_CBC_SHA | DHE-RSA-AES128-SHA | TLS_DHE_RSA_AES_128_CBC_SHA1 | TLS_DHE_RSA_WITH_AES_128_CBC_SHA |
0x00,0x34 | TLS_DH_anon_WITH_AES_128_CBC_SHA | ADH-AES128-SHA | TLS_DH_ANON_AES_128_CBC_SHA1 | TLS_DH_ANON_WITH_AES_128_CBC_SHA |
0x00,0x35 | TLS_RSA_WITH_AES_256_CBC_SHA | AES256-SHA | TLS_RSA_AES_256_CBC_SHA1 | TLS_RSA_WITH_AES_256_CBC_SHA |
0x00,0x36 | TLS_DH_DSS_WITH_AES_256_CBC_SHA | TLS_DH_DSS_WITH_AES_256_CBC_SHA | ||
0x00,0x37 | TLS_DH_RSA_WITH_AES_256_CBC_SHA | TLS_DH_RSA_WITH_AES_256_CBC_SHA | ||
0x00,0x38 | TLS_DHE_DSS_WITH_AES_256_CBC_SHA | DHE-DSS-AES256-SHA | TLS_DHE_DSS_AES_256_CBC_SHA1 | TLS_DHE_DSS_WITH_AES_256_CBC_SHA |
0x00,0x39 | TLS_DHE_RSA_WITH_AES_256_CBC_SHA | DHE-RSA-AES256-SHA | TLS_DHE_RSA_AES_256_CBC_SHA1 | TLS_DHE_RSA_WITH_AES_256_CBC_SHA |
0x00,0x3A | TLS_DH_anon_WITH_AES_256_CBC_SHA | ADH-AES256-SHA | TLS_DH_ANON_AES_256_CBC_SHA1 | TLS_DH_ANON_WITH_AES_256_CBC_SHA |
0x00,0x3B | TLS_RSA_WITH_NULL_SHA256 | NULL-SHA256 | TLS_RSA_NULL_SHA256 | TLS_RSA_WITH_NULL_SHA256 |
0x00,0x3C | TLS_RSA_WITH_AES_128_CBC_SHA256 | AES128-SHA256 | TLS_RSA_AES_128_CBC_SHA256 | TLS_RSA_WITH_AES_128_CBC_SHA256 |
0x00,0x3D | TLS_RSA_WITH_AES_256_CBC_SHA256 | AES256-SHA256 | TLS_RSA_AES_256_CBC_SHA256 | TLS_RSA_WITH_AES_256_CBC_SHA256 |
0x00,0x3E | TLS_DH_DSS_WITH_AES_128_CBC_SHA256 | |||
0x00,0x3F | TLS_DH_RSA_WITH_AES_128_CBC_SHA256 | |||
0x00,0x40 | TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 | DHE-DSS-AES128-SHA256
DES-CBC-MD5 |
TLS_DHE_DSS_AES_128_CBC_SHA256 | |
0x00,0x41 | TLS_RSA_WITH_CAMELLIA_128_CBC_SHA | CAMELLIA128-SHA | TLS_RSA_CAMELLIA_128_CBC_SHA1 | TLS_RSA_WITH_CAMELLIA_128_CBC_SHA |
0x00,0x42 | TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA | TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA | ||
0x00,0x43 | TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA | TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA | ||
0x00,0x44 | TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA | DHE-DSS-CAMELLIA128-SHA | TLS_DHE_DSS_CAMELLIA_128_CBC_SHA1 | TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA |
0x00,0x45 | TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA | DHE-RSA-CAMELLIA128-SHA | TLS_DHE_RSA_CAMELLIA_128_CBC_SHA1 | TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA |
0x00,0x46 | TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA | ADH-CAMELLIA128-SHA | TLS_DH_ANON_CAMELLIA_128_CBC_SHA1 | TLS_DH_ANON_WITH_CAMELLIA_128_CBC_SHA |
0x00,0x67 | TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 | DHE-RSA-AES128-SHA256 | TLS_DHE_RSA_AES_128_CBC_SHA256 | TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 |
0x00,0x68 | TLS_DH_DSS_WITH_AES_256_CBC_SHA256 | |||
0x00,0x69 | TLS_DH_RSA_WITH_AES_256_CBC_SHA256 | |||
0x00,0x6A | TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 | DHE-DSS-AES256-SHA256 | TLS_DHE_DSS_AES_256_CBC_SHA256 | |
0x00,0x6B | TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 | DHE-RSA-AES256-SHA256 | TLS_DHE_RSA_AES_256_CBC_SHA256 | TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 |
0x00,0x6C | TLS_DH_anon_WITH_AES_128_CBC_SHA256 | ADH-AES128-SHA256 | TLS_DH_ANON_AES_128_CBC_SHA256 | |
0x00,0x6D | TLS_DH_anon_WITH_AES_256_CBC_SHA256 | ADH-AES256-SHA256 | TLS_DH_ANON_AES_256_CBC_SHA256 | |
0x00,0x84 | TLS_RSA_WITH_CAMELLIA_256_CBC_SHA | CAMELLIA256-SHA | TLS_RSA_CAMELLIA_256_CBC_SHA1 | TLS_RSA_WITH_CAMELLIA_256_CBC_SHA |
0x00,0x85 | TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA | TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA | ||
0x00,0x86 | TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA | TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA | ||
0x00,0x87 | TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA | DHE-DSS-CAMELLIA256-SHA | TLS_DHE_DSS_CAMELLIA_256_CBC_SHA1 | TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA |
0x00,0x88 | TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA | DHE-RSA-CAMELLIA256-SHA | TLS_DHE_RSA_CAMELLIA_256_CBC_SHA1 | TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA |
0x00,0x89 | TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA | ADH-CAMELLIA256-SHA | TLS_DH_ANON_CAMELLIA_256_CBC_SHA1 | TLS_DH_ANON_WITH_CAMELLIA_256_CBC_SHA |
0x00,0x8A | TLS_PSK_WITH_RC4_128_SHA | PSK-RC4-SHA | TLS_PSK_SHA_ARCFOUR_SHA1 | |
0x00,0x8B | TLS_PSK_WITH_3DES_EDE_CBC_SHA | PSK-3DES-EDE-CBC-SHA | TLS_PSK_SHA_3DES_EDE_CBC_SHA1 | |
0x00,0x8C | TLS_PSK_WITH_AES_128_CBC_SHA | PSK-AES128-CBC-SHA | TLS_PSK_SHA_AES_128_CBC_SHA1 | |
0x00,0x8D | TLS_PSK_WITH_AES_256_CBC_SHA | PSK-AES256-CBC-SHA | TLS_PSK_SHA_AES_256_CBC_SHA1 | |
0x00,0x8E | TLS_DHE_PSK_WITH_RC4_128_SHA | TLS_DHE_PSK_SHA_ARCFOUR_SHA1 | ||
0x00,0x8F | TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA | TLS_DHE_PSK_SHA_3DES_EDE_CBC_SHA1 | ||
0x00,0x90 | TLS_DHE_PSK_WITH_AES_128_CBC_SHA | TLS_DHE_PSK_SHA_AES_128_CBC_SHA1 | ||
0x00,0x91 | TLS_DHE_PSK_WITH_AES_256_CBC_SHA | TLS_DHE_PSK_SHA_AES_256_CBC_SHA1 | ||
0x00,0x92 | TLS_RSA_PSK_WITH_RC4_128_SHA | |||
0x00,0x93 | TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA | |||
0x00,0x94 | TLS_RSA_PSK_WITH_AES_128_CBC_SHA | |||
0x00,0x95 | TLS_RSA_PSK_WITH_AES_256_CBC_SHA | |||
0x00,0x96 | TLS_RSA_WITH_SEED_CBC_SHA | SEED-SHA | TLS_RSA_WITH_SEED_CBC_SHA | |
0x00,0x97 | TLS_DH_DSS_WITH_SEED_CBC_SHA | |||
0x00,0x98 | TLS_DH_RSA_WITH_SEED_CBC_SHA | |||
0x00,0x99 | TLS_DHE_DSS_WITH_SEED_CBC_SHA | DHE-DSS-SEED-SHA | ||
0x00,0x9A | TLS_DHE_RSA_WITH_SEED_CBC_SHA | DHE-RSA-SEED-SHA | ||
0x00,0x9B | TLS_DH_anon_WITH_SEED_CBC_SHA | ADH-SEED-SHA | ||
0x00,0x9C | TLS_RSA_WITH_AES_128_GCM_SHA256 | AES128-GCM-SHA256 | TLS_RSA_AES_128_GCM_SHA256 | TLS_RSA_WITH_AES_128_GCM_SHA256 |
0x00,0x9D | TLS_RSA_WITH_AES_256_GCM_SHA384 | AES256-GCM-SHA384 | ||
0x00,0x9E | TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 | DHE-RSA-AES128-GCM-SHA256 | TLS_DHE_RSA_AES_128_GCM_SHA256 | TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 |
0x00,0x9F | TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 | DHE-RSA-AES256-GCM-SHA384 | ||
0x00,0xA0 | TLS_DH_RSA_WITH_AES_128_GCM_SHA256 | |||
0x00,0xA1 | TLS_DH_RSA_WITH_AES_256_GCM_SHA384 | |||
0x00,0xA2 | TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 | DHE-DSS-AES128-GCM-SHA256 | TLS_DHE_DSS_AES_128_GCM_SHA256 | TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 |
0x00,0xA3 | TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 | DHE-DSS-AES256-GCM-SHA384 | ||
0x00,0xA4 | TLS_DH_DSS_WITH_AES_128_GCM_SHA256 | |||
0x00,0xA5 | TLS_DH_DSS_WITH_AES_256_GCM_SHA384 | |||
0x00,0xA6 | TLS_DH_anon_WITH_AES_128_GCM_SHA256 | ADH-AES128-GCM-SHA256 | TLS_DH_ANON_AES_128_GCM_SHA256 | |
0x00,0xA7 | TLS_DH_anon_WITH_AES_256_GCM_SHA384 | ADH-AES256-GCM-SHA384 | ||
0x00,0xA8 | TLS_PSK_WITH_AES_128_GCM_SHA256 | TLS_PSK_AES_128_GCM_SHA256 | ||
0x00,0xA9 | TLS_PSK_WITH_AES_256_GCM_SHA384 | TLS_PSK_WITH_AES_256_GCM_SHA384 | ||
0x00,0xAA | TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 | TLS_DHE_PSK_AES_128_GCM_SHA256 | ||
0x00,0xAB | TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 | TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 | ||
0x00,0xAC | TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 | |||
0x00,0xAD | TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 | |||
0x00,0xAE | TLS_PSK_WITH_AES_128_CBC_SHA256 | TLS_PSK_AES_128_CBC_SHA256 | ||
0x00,0xAF | TLS_PSK_WITH_AES_256_CBC_SHA384 | |||
0x00,0xB0 | TLS_PSK_WITH_NULL_SHA256 | TLS_PSK_NULL_SHA256 | ||
0x00,0xB1 | TLS_PSK_WITH_NULL_SHA384 | |||
0x00,0xB2 | TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 | TLS_DHE_PSK_AES_128_CBC_SHA256 | ||
0x00,0xB3 | TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 | |||
0x00,0xB4 | TLS_DHE_PSK_WITH_NULL_SHA256 | TLS_DHE_PSK_NULL_SHA256 | ||
0x00,0xB5 | TLS_DHE_PSK_WITH_NULL_SHA384 | |||
0x00,0xB6 | TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 | |||
0x00,0xB7 | TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 | |||
0x00,0xB8 | TLS_RSA_PSK_WITH_NULL_SHA256 | |||
0x00,0xB9 | TLS_RSA_PSK_WITH_NULL_SHA384 | |||
0x00,0xBA | TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0x00,0xBB | TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256 | |||
0x00,0xBC | TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0x00,0xBD | TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256 | |||
0x00,0xBE | TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0x00,0xBF | TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256 | |||
0x00,0xC0 | TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 | DES-CBC3-MD5 | ||
0x00,0xC1 | TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256 | |||
0x00,0xC2 | TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256 | |||
0x00,0xC3 | TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256 | |||
0x00,0xC4 | TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 | |||
0x00,0xC5 | TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256 | |||
0x00,0xFF | TLS_EMPTY_RENEGOTIATION_INFO_SCSV | TLS_EMPTY_RENEGOTIATION_INFO_SCSV | ||
0xC0,0x01 | TLS_ECDH_ECDSA_WITH_NULL_SHA | ECDH-ECDSA-NULL-SHA | TLS_ECDH_ECDSA_WITH_NULL_SHA | |
0xC0,0x02 | TLS_ECDH_ECDSA_WITH_RC4_128_SHA | ECDH-ECDSA-RC4-SHA | TLS_ECDH_ECDSA_WITH_RC4_128_SHA | |
0xC0,0x03 | TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA | ECDH-ECDSA-DES-CBC3-SHA | TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA | |
0xC0,0x04 | TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA | ECDH-ECDSA-AES128-SHA | TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA | |
0xC0,0x05 | TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA | ECDH-ECDSA-AES256-SHA | TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA | |
0xC0,0x06 | TLS_ECDHE_ECDSA_WITH_NULL_SHA | ECDHE-ECDSA-NULL-SHA | TLS_ECDHE_ECDSA_NULL_SHA1 | TLS_ECDHE_ECDSA_WITH_NULL_SHA |
0xC0,0x07 | TLS_ECDHE_ECDSA_WITH_RC4_128_SHA | ECDHE-ECDSA-RC4-SHA | TLS_ECDHE_ECDSA_WITH_RC4_128_SHA | |
0xC0,0x08 | TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA | ECDHE-ECDSA-DES-CBC3-SHA | TLS_ECDHE_ECDSA_3DES_EDE_CBC_SHA1 | TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA |
0xC0,0x09 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA | ECDHE-ECDSA-AES128-SHA | TLS_ECDHE_ECDSA_AES_128_CBC_SHA1 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA |
0xC0,0x0A | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA | ECDHE-ECDSA-AES256-SHA | TLS_ECDHE_ECDSA_AES_256_CBC_SHA1 | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA |
0xC0,0x0B | TLS_ECDH_RSA_WITH_NULL_SHA | ECDH-RSA-NULL-SHA | TLS_ECDH_RSA_WITH_NULL_SHA | |
0xC0,0x0C | TLS_ECDH_RSA_WITH_RC4_128_SHA | ECDH-RSA-RC4-SHA | TLS_ECDH_RSA_WITH_RC4_128_SHA | |
0xC0,0x0D | TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA | ECDH-RSA-DES-CBC3-SHA | TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA | |
0xC0,0x0E | TLS_ECDH_RSA_WITH_AES_128_CBC_SHA | ECDH-RSA-AES128-SHA | TLS_ECDH_RSA_WITH_AES_128_CBC_SHA | |
0xC0,0x0F | TLS_ECDH_RSA_WITH_AES_256_CBC_SHA | ECDH-RSA-AES256-SHA | TLS_ECDH_RSA_WITH_AES_256_CBC_SHA | |
0xC0,0x10 | TLS_ECDHE_RSA_WITH_NULL_SHA | ECDHE-RSA-NULL-SHA | TLS_ECDHE_RSA_NULL_SHA1 | TLS_ECDHE_RSA_WITH_NULL_SHA |
0xC0,0x11 | TLS_ECDHE_RSA_WITH_RC4_128_SHA | ECDHE-RSA-RC4-SHA | TLS_ECDHE_RSA_WITH_RC4_128_SHA | |
0xC0,0x12 | TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA | ECDHE-RSA-DES-CBC3-SHA | TLS_ECDHE_RSA_3DES_EDE_CBC_SHA1 | TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA |
0xC0,0x13 | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA | ECDHE-RSA-AES128-SHA | TLS_ECDHE_RSA_AES_128_CBC_SHA1 | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA |
0xC0,0x14 | TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA | ECDHE-RSA-AES256-SHA | TLS_ECDHE_RSA_AES_256_CBC_SHA1 | TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA |
0xC0,0x15 | TLS_ECDH_anon_WITH_NULL_SHA | AECDH-NULL-SHA | TLS_ECDH_ANON_NULL_SHA1 | TLS_ECDH_anon_WITH_NULL_SHA |
0xC0,0x16 | TLS_ECDH_anon_WITH_RC4_128_SHA | AECDH-RC4-SHA | TLS_ECDH_anon_WITH_RC4_128_SHA | |
0xC0,0x17 | TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA | AECDH-DES-CBC3-SHA | TLS_ECDH_ANON_3DES_EDE_CBC_SHA1 | TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA |
0xC0,0x18 | TLS_ECDH_anon_WITH_AES_128_CBC_SHA | AECDH-AES128-SHA | TLS_ECDH_ANON_AES_128_CBC_SHA1 | TLS_ECDH_anon_WITH_AES_128_CBC_SHA |
0xC0,0x19 | TLS_ECDH_anon_WITH_AES_256_CBC_SHA | AECDH-AES256-SHA | TLS_ECDH_ANON_AES_256_CBC_SHA1 | TLS_ECDH_anon_WITH_AES_256_CBC_SHA |
0xC0,0x1A | TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA | |||
0xC0,0x1B | TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA | |||
0xC0,0x1C | TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA | |||
0xC0,0x1D | TLS_SRP_SHA_WITH_AES_128_CBC_SHA | |||
0xC0,0x1E | TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA | |||
0xC0,0x1F | TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA | |||
0xC0,0x20 | TLS_SRP_SHA_WITH_AES_256_CBC_SHA | |||
0xC0,0x21 | TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA | |||
0xC0,0x22 | TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA | |||
0xC0,0x23 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 | ECDHE-ECDSA-AES128-SHA256 | TLS_ECDHE_ECDSA_AES_128_CBC_SHA256 | TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 |
0xC0,0x24 | TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 | ECDHE-ECDSA-AES256-SHA384 | TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 | |
0xC0,0x25 | TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 | ECDH-ECDSA-AES128-SHA256 | ||
0xC0,0x26 | TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 | ECDH-ECDSA-AES256-SHA384 | ||
0xC0,0x27 | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 | ECDHE-RSA-AES128-SHA256 | TLS_ECDHE_RSA_AES_128_CBC_SHA256 | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 |
0xC0,0x28 | TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 | ECDHE-RSA-AES256-SHA384 | ||
0xC0,0x29 | TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 | ECDH-RSA-AES128-SHA256 | ||
0xC0,0x2A | TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 | ECDH-RSA-AES256-SHA384 | ||
0xC0,0x2B | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 | ECDHE-ECDSA-AES128-GCM-SHA256 | TLS_ECDHE_ECDSA_AES_128_GCM_SHA256 | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 |
0xC0,0x2C | TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 | ECDHE-ECDSA-AES256-GCM-SHA384 | TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 | |
0xC0,0x2D | TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 | ECDH-ECDSA-AES128-GCM-SHA256 | TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 | |
0xC0,0x2E | TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 | ECDH-ECDSA-AES256-GCM-SHA384 | ||
0xC0,0x2F | TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 | ECDHE-RSA-AES128-GCM-SHA256 | TLS_ECDHE_RSA_AES_128_GCM_SHA256 | TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 |
0xC0,0x30 | TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 | ECDHE-RSA-AES256-GCM-SHA384 | TLS_ECDHE_RSA_AES_256_GCM_SHA384 | |
0xC0,0x31 | TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 | ECDH-RSA-AES128-GCM-SHA256 | TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 | |
0xC0,0x32 | TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 | ECDH-RSA-AES256-GCM-SHA384 | ||
0xC0,0x33 | TLS_ECDHE_PSK_WITH_RC4_128_SHA | |||
0xC0,0x34 | TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA | TLS_ECDHE_PSK_3DES_EDE_CBC_SHA1 | ||
0xC0,0x35 | TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA | TLS_ECDHE_PSK_AES_128_CBC_SHA1 | ||
0xC0,0x36 | TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA | TLS_ECDHE_PSK_AES_256_CBC_SHA1 | ||
0xC0,0x37 | TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 | TLS_ECDHE_PSK_AES_128_CBC_SHA256 | ||
0xC0,0x38 | TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 | TLS_ECDHE_PSK_AES_256_CBC_SHA384 | ||
0xC0,0x39 | TLS_ECDHE_PSK_WITH_NULL_SHA | |||
0xC0,0x3A | TLS_ECDHE_PSK_WITH_NULL_SHA256 | TLS_ECDHE_PSK_NULL_SHA256 | ||
0xC0,0x3B | TLS_ECDHE_PSK_WITH_NULL_SHA384 | TLS_ECDHE_PSK_NULL_SHA384 | ||
0xC0,0x3C | TLS_RSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x3D | TLS_RSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x3E | TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x3F | TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x40 | TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x41 | TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x42 | TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x43 | TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x44 | TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x45 | TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x46 | TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x47 | TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x48 | TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x49 | TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x4A | TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x4B | TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x4C | TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x4D | TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x4E | TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x4F | TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x50 | TLS_RSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x51 | TLS_RSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x52 | TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x53 | TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x54 | TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x55 | TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x56 | TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x57 | TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x58 | TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x59 | TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x5A | TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x5B | TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x5C | TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x5D | TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x5E | TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x5F | TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x60 | TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x61 | TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x62 | TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x63 | TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x64 | TLS_PSK_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x65 | TLS_PSK_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x66 | TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x67 | TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x68 | TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x69 | TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x6A | TLS_PSK_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x6B | TLS_PSK_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x6C | TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x6D | TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x6E | TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 | |||
0xC0,0x6F | TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 | |||
0xC0,0x70 | TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 | |||
0xC0,0x71 | TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 | |||
0xC0,0x72 | TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x73 | TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x74 | TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x75 | TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x76 | TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x77 | TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x78 | TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x79 | TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x7A | TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x7B | TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x7C | TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x7D | TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x7E | TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x7F | TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x80 | TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x81 | TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x82 | TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x83 | TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x84 | TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x85 | TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x86 | TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x87 | TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x88 | TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x89 | TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x8A | TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x8B | TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x8C | TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x8D | TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x8E | TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x8F | TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x90 | TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x91 | TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x92 | TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256 | |||
0xC0,0x93 | TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384 | |||
0xC0,0x94 | TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x95 | TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x96 | TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x97 | TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x98 | TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x99 | TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x9A | TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 | |||
0xC0,0x9B | TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 | |||
0xC0,0x9C | TLS_RSA_WITH_AES_128_CCM | |||
0xC0,0x9D | TLS_RSA_WITH_AES_256_CCM | |||
0xC0,0x9E | TLS_DHE_RSA_WITH_AES_128_CCM | |||
0xC0,0x9F | TLS_DHE_RSA_WITH_AES_256_CCM | |||
0xC0,0xA0 | TLS_RSA_WITH_AES_128_CCM_8 | |||
0xC0,0xA1 | TLS_RSA_WITH_AES_256_CCM_8 | |||
0xC0,0xA2 | TLS_DHE_RSA_WITH_AES_128_CCM_8 | |||
0xC0,0xA3 | TLS_DHE_RSA_WITH_AES_256_CCM_8 | |||
0xC0,0xA4 | TLS_PSK_WITH_AES_128_CCM | |||
0xC0,0xA5 | TLS_PSK_WITH_AES_256_CCM | |||
0xC0,0xA6 | TLS_DHE_PSK_WITH_AES_128_CCM | |||
0xC0,0xA7 | TLS_DHE_PSK_WITH_AES_256_CCM | |||
0xC0,0xA8 | TLS_PSK_WITH_AES_128_CCM_8 | |||
0xC0,0xA9 | TLS_PSK_WITH_AES_256_CCM_8 | |||
0xC0,0xAA | TLS_PSK_DHE_WITH_AES_128_CCM_8 | |||
0xC0,0xAB | TLS_PSK_DHE_WITH_AES_256_CCM_8 |
The table above was automatically generated by the script at https://github.com/jvehent/tlsnames/blob/master/build_correspondence_table.sh
GnuTLS ciphersuite
Unlike OpenSSL, GnuTLS will panic if you give it ciphers aren't supported by the library. That makes it very difficult to share a default ciphersuite to use in GnuTLS. The next best thing is using the following ciphersuite, and removing the components that break on your own version:
NONE:+VERS-TLS1.2:+VERS-TLS1.1:+VERS-TLS1.0:+ECDHE-RSA:+DHE-RSA:+RSA:+AES-128-GCM:+AES-128-CBC:+AES-256-CBC:+SIGN-RSA-SHA256:+SIGN-RSA-SHA384:+SIGN-RSA-SHA512:+SIGN-RSA-SHA224:+SIGN-RSA-SHA1:+SIGN-DSA-SHA256:+SIGN-DSA-SHA224:+SIGN-DSA-SHA1:+CURVE-ALL:+AEAD:+SHA256:+SHA384:+SHA1:+COMP-NULL
A ciphersuite can be tested in GnuTLS using gnutls-cli.
$ gnutls-cli --version
gnutls-cli 3.1.26
$ gnutls-cli -l --priority NONE:+VERS-TLS1.2:+VERS-TLS1.1:+VERS-TLS1.0:+ECDHE-RSA:+DHE-RSA:+RSA:+AES-128-GCM:+AES-128-CBC:+AES-256-CBC:+SIGN-RSA-SHA256:+SIGN-RSA-SHA384:+SIGN-RSA-SHA512:+SIGN-RSA-SHA224:+SIGN-RSA-SHA1:+SIGN-DSA-SHA256:+SIGN-DSA-SHA224:+SIGN-DSA-SHA1:+CURVE-ALL:+AEAD:+SHA256:+SHA384:+SHA1:+COMP-NULLCipher suites for NONE:+VERS-TLS1.2:+VERS-TLS1.1:+VERS-TLS1.0:+ECDHE-RSA:+DHE-RSA:+RSA:+AES-128-GCM:+AES-128-CBC:+AES-256-CBC:+SIGN-RSA-SHA256:+SIGN-RSA-SHA384:+SIGN-RSA-SHA512:+SIGN-RSA-SHA224:+SIGN-RSA-SHA1:+SIGN-DSA-SHA256:+SIGN-DSA-SHA224:+SIGN-DSA-SHA1:+CURVE-ALL:+AEAD:+SHA256:+SHA384:+SHA1:+COMP-NULL
TLS_ECDHE_RSA_AES_128_GCM_SHA256 0xc0, 0x2f TLS1.2
TLS_ECDHE_RSA_AES_128_CBC_SHA256 0xc0, 0x27 TLS1.0
TLS_ECDHE_RSA_AES_128_CBC_SHA1 0xc0, 0x13 SSL3.0
TLS_ECDHE_RSA_AES_256_CBC_SHA1 0xc0, 0x14 SSL3.0
TLS_DHE_RSA_AES_128_GCM_SHA256 0x00, 0x9e TLS1.2
TLS_DHE_RSA_AES_128_CBC_SHA256 0x00, 0x67 TLS1.0
TLS_DHE_RSA_AES_128_CBC_SHA1 0x00, 0x33 SSL3.0
TLS_DHE_RSA_AES_256_CBC_SHA256 0x00, 0x6b TLS1.0
TLS_DHE_RSA_AES_256_CBC_SHA1 0x00, 0x39 SSL3.0
TLS_RSA_AES_128_GCM_SHA256 0x00, 0x9c TLS1.2
TLS_RSA_AES_128_CBC_SHA256 0x00, 0x3c TLS1.0
TLS_RSA_AES_128_CBC_SHA1 0x00, 0x2f SSL3.0
TLS_RSA_AES_256_CBC_SHA256 0x00, 0x3d TLS1.0
TLS_RSA_AES_256_CBC_SHA1 0x00, 0x35 SSL3.0
Certificate types: none
Protocols: VERS-TLS1.2, VERS-TLS1.1, VERS-TLS1.0
Compression: COMP-NULL
Elliptic curves: CURVE-SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1
PK-signatures: SIGN-RSA-SHA256, SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-RSA-SHA224, SIGN-RSA-SHA1, SIGN-DSA-SHA256, SIGN-DSA-SHA224, SIGN-DSA-SHA1
A good way to debug the ciphersuite is by performing a test connection. If the ciphersuite isn't supported, gnutls-cli will stop reading it at the component that is causing the issue.
$ gnutls-cli --debug 9999 google.com --priority 'NONE:+VERS-TLS1.2:+VERS-TLS1.1:+VERS-TLS1.0:+ECDHE-RSA:+DHE-RSA:+RSA:+AES-128-GCM:+AES-128-CBC:+AES-256-CBC:+SIGN-RSA-SHA256:+SIGN-RSA-SHA384:+SIGN-RSA-SHA512:+SIGN-RSA-SHA224:+SIGN-RSA-SHA1:+SIGN-DSA-SHA256:+SIGN-DSA-SHA224:+SIGN-DSA-SHA1:+CURVE-ALL:+AEAD:+SHA256:+SHA384:+SHA1:+COMP-NULL'
|<2>| ASSERT: gnutls_priority.c:812
Syntax error at: +SIGN-RSA-SHA224:+SIGN-RSA-SHA1:+SIGN-DSA-SHA256:+SIGN-DSA-SHA224:+SIGN-DSA-SHA1:+SHA256:+SHA384:+SHA1:+COMP-NULL
In the example above, the component SIGN-RSA-SHA224 is not supported by this version of gnutls and should be removed from the ciphersuite.