Security:Strawman Model
Types
Principal = (System, Origins, Unknown) // disjoint type union System = {system} // system principal singleton Origin = {origin1, ..., originN} // set of N origin principals Origins = powerset(Origin) - {} Unknown = {unknown} // unknown principal singleton Request = {get, set, call} // principal requests of objects Stack = array [Activation] // array of activation objects where top() = this[this.length-1] Activation = record {global:Window, subject:Principal} Object = record {parent:Object} // record with parent field Document = record {parent:Object, children:Array = []} where appendChild(c) = (c.parent = this, this.children.push(c)) Link = record {parent:Object = null, href:String, text:String} Button = record {parent:Object = null, onclick:String, text:String} IFrame = record {parent:Object = null, src:String, content:Window = null} Script = record {parent:Object = null, content:String} Window = record {parent:Object = null, location:String, principal:Principal, opener:Window, document:Document = null}
Grammar
Informal subset EBNF grammar for an XHTML-subset markup language, with embedded semantics, capitalized non-terminals, and quoted or lowercase terminals.
Document ::= document = new Document() Content Content ::= (Text | Markup)* Text ::= text document.appendChild(new Text(text)) Markup ::= < 'a' 'href' '=' string '>' text '</' 'a' '>' document.appendChild(new Link(string, text)) | < 'button' 'onclick' '=' string > text </ 'button' > document.appendChild(new Button(string, text)) | < 'iframe' 'src' '=' string /> let frame:IFrame = new IFrame(string) document.appendChild(frame) frame.content = new Window("about:blank") load(frame.content, string) | < 'script' > text </ 'script' > document.appendChild(new Script(text)) eval(text)
Definitions
Let P be the set of all principals.
Let <= be a binary relation by which P is partially ordered.
For all p in P, p <= system.
For all Origin principals p and q in P, !(p <= q) && !(q <= p).
For all p in P, unknown <= p.
For all principals p and q, there exists in P the greatest lower bound (p ^ q), the meet of p and q, defined by <=. (P, <=) is a meet semi-lattice.
For all p in P, (p ^ system) == p.
For all p in P, (p ^ unknown) == unknown.
Let stack:Stack = new Stack.
Let d:Document, o:Object, r:Request, s:String, w:Window, x:* in the following sections.
Functions
(The matches operator takes either a string right operand to prefix-match, or a `-quoted template, informally connoting a pattern to match. The result of matches is either the empty string on failure, which converts to false; or the matching prefix string on success.)
Let origin(s) = (s matches `scheme://hostpart`) || unknown.
Let pseudo(s) = !s || s matches 'about:' || s matches 'data:' || s matches 'javascript:'.
Let global() = stack.top().global.
Let subject() = stack.top().subject.
Let urlString(s) = s || 'about:blank'
Let urlPrincipal(s) = pseudo(s) ? subject() : origin(s).
Let open(s) = load(new Window(urlString(s), urlPrincipal(s), global()), s).
Let principal(x) = (x is Window) ? x.principal : principal(x.parent).
Let mapMeet(a) = a[0].subject ^ ... ^ a.top().subject.
Let canAccess(o, r) = allAccess(o, r) || principal(o) <= mapMeet(stack).